DISEÑO E IMPLEMENTACIÓN DE PROTO TIPO DE ROBOT LEGO MINDSTORMS EV3 PARA APROPIACIÓN DEL CONCEPTO DE LUZ, EN CLUBES DE CIENCIA 2018

Margarita M. Vallejo-Jiménez- Miembro IEEE
Facilitador Línea de Robótica Tecnoacademia Risaralda - SENA

RESUMEN

El presente trabajo da a conocer la estrategia diseñada e implementada por parte de la co-instructora del club Jugando con la Luz y facilitadora de la Línea de Robótica de la Tecnoacademia, con la colaboración de los aprendices del Semillero SENA, en donde se construyó un prototipo basado en la herramienta robótica LEGO MINDSTORMS EV3, usando un sensor de color. El robot fue diseñado mediante metodología de diseño y STEM para que los estudiantes del club se apropiaran de los conceptos de espectro electromagnético, luz y señales, los cuales pueden verse aplicados en robótica móvil e industrial; sirviendo de motivación a investigar en las ciencias básicas, como punto de partida para el desarrollo de la ciencias aplicadas.

Palabras clave: Robótica; Lego mindstorms; luz; mecatrónica.

1. INTRODUCCIÓN

Una de los retos de Clubes de Ciencia Colombia [1] es demostrar que el trabajo conjunto de estudiantes, instructores y entidades patrocinadoras en torno a la ciencia puede desatar una revolución científica y tecnológica, bajo una metodología innovadora, capaz de generar una transformación social en el país.

Como parte de las actividades de co-instructora, se diseñó e implementó una estrategia con ayuda de los aprendices del semillero de Robótica, para facilitar el aprendizaje de temas y conceptos relacionados con la temática de la luz y se propuso realizarla en el contexto de la robótica. Esta tecnología aplicada se propone en el mundo como una herramienta educativa en instituciones de educación básica primaria y secundaria, con el fin de fortalecer las competencias y el desempeño académico del educando mediante herramientas innovadoras que permitan una construcción dinámica del conocimiento [2] y además mediadas por las Ciencia, las Tecnologías, la Ingeniería y las Matemáticas “STEM” [6]. Los robots naturalmente despiertan los intereses y la curiosidad de los niños, los entusiasma a explorar sus ideas a través de sus indagaciones y probar sus hipótesis, hacer nuevos descubrimientos y desarrollar su conocimiento a través de experiencias del mundo real al usar una herramienta mejorada tecnológicamente y computacionalmente [2]. Desde la Línea de Robótica de la Tecnoacademia Risaralda se han implementado desde inicios de este año, diferentes estrategias para la enseñanza de conceptos STEM, a través de la herramienta robótica LEGO MINDSTORMS EV3.

El curriculum de LEGO EDUCATION se basa en la metodología STEM y contempla diferentes retos que se realizan en las clases de la línea de Robótica para la enseñanza de la mecánica, la electrónica y la programación del robot, siempre en contexto [5] y partiendo del uso de los sensores, para que interactúen con el ambiente. Se elige entonces el sensor de color para explicar el concepto de luz en el club Jugando con la luz; este sensor de referencia 45506, funciona de tres modos diferentes: detección de color, detección de intensidad de luz ambiental y detección de intensidad de luz reflejada por un objeto y/o superficie.

2. MATERIALES Y MÉTODOS

La experiencia se divide en dos momentos: El diseño y prueba del prototipo por parte de los aprendices del semillero que participaron en clubes de ciencia y la experiencia por parte de los demás estudiante en Club de Ciencias Jugando con la Luz al interactuar con el.
El prototipado sigue una metodología de diseño mecatrónico, en donde se divide al robot en subsistemas mecánicos, electrónicos (sensores) y de programación, según fases de la robótica propuestas por Gálvez-Legua [4] y comparándolas con el método científico según la Figura 1.

![Figura 1. Equivalencia del Método Científico y las fases de Diseño Mecatrónico de un robot. (Gálvez-Legua, 2013)](image)

Se realizan las siguientes actividades para hacer y probar el prototipo:

- **Diseñar** el prototipo de robot basado en el sensor digital de luz de LEGO MINDSTORM EV3 de acuerdo a los subsistemas mecánico, electrónico y de programación.
- **Construir** el robot en su configuración base motriz.
- **Programar** el robot, usando el sensor luz en: modo color, modo intensidad de luz reflejada y modo intensidad de luz ambiental.
- **Probar**, documentar y compartir el funcionamiento robot, usando el sensor de color, en el club Jugando con la luz de Clubes de ciencia 2018.

Los resultados de cada actividad son los siguientes

Diseñar: Se define la arquitectura mecánica del robot LEGO MINDSTORMS EV3 con tracción diferencial, usando los dos motores grandes y una rueda loca, por su facilidad de construcción, desplazamiento y estabilidad. El subsistema electrónico básico se basa en el sensor de color, usado en los modos color, intensidad de luz ambiental e intensidad de luz reflejada.

Luego, se caracteriza al sensor digital de color de LEGO MINDSTORMS EV3 45506, cuya razón de muestreo es de 1 kHz por segundo, según la Tabla 1.

<table>
<thead>
<tr>
<th>Modo de programación</th>
<th>Variable</th>
<th>Rango</th>
<th>Valores</th>
<th>Indicador de modo en el sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Número del color detectado</td>
<td>0 a 7</td>
<td>0 = Sin color, 1 = Negro</td>
<td>Luz led azul, rojo y verde</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 = Azul, 3 = Verde, 4 = Amarillo, 5 = Rojo, 6 = Blanco, 7 = Café</td>
<td></td>
</tr>
<tr>
<td>Intensidad de luz ambiental</td>
<td>Porcentaje de luz que entra al sensor</td>
<td>0 a 100</td>
<td>0 = Muy oscuro, 100 = Muy brillante</td>
<td>Luz led azul</td>
</tr>
<tr>
<td>Intensidad de luz reflejada</td>
<td>Porcentaje de luz reflejada</td>
<td></td>
<td>Luz led roja</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 1. Caracterización del sensor de color LEGO MINDSTORMS EV3 45506

En el subsistema de programación, se elige programar al robot según los tres modos de funcionamiento del sensor de color. Para el modo de color se implementa el seguirdor de secuencia de colores. Para el modo intensidad de luz ambiental, se programa un robot que de vueltas sobre sí mismo y cuya velocidad cambia. Para el modo de intensidad de luz reflejada se programa un robot seguirdor de línea negra.

Construir: Se construye el robot en la configuración base motriz, según la figura 2, con tracción diferencial trasera y la rueda loca delantera. El sensor de color se ubica en la parte delantera izquierda. El sensor debe encontrarse en ángulo recto, cerca de la superficie que se detecta, pero sin llegar a tocarla.

Programar: Se programa al robot dependiendo del modo de funcionamiento del sensor de color.

MODO COLOR

Se implementan dos programas en este modo:

- El sensor de color detecta automáticamente el color de un objeto que se pone frente a él, pronuncia el nombre del color en inglés y en su pantalla aparece el nombre del color.
- El robot sigue la pista de color de lego y cuando encuentra un color frena, pronuncia el nombre del color en inglés y sigue su camino hacia otro color (seguidor de secuencia de colores)
MODO INTENSIDAD DE LUZ AMBIENTAL

El sensor de color detecta la intensidad de luz ambiental y, con base en el valor obtenido, el robot puede girar sobre sí mismo a mayor o menor velocidad, como se observa en la Figura 3. A menor intensidad detectada gira más despacio y a mayor intensidad, gira más rápido.

MODO INTENSIDAD DE LUZ REFLEJADA

El sensor de luz busca una superficie con intensidad de luz reflejada cercana a cero y la siga, según la Figura 6. Esto es lo que se conoce como un robot seguidor de línea, en este caso se usa una pista predefinida de lego, que consiste en una línea de color negro de forma ovalada. El robot busca y sigue la línea negra.

Probar, Documentar y Comparar: Antes de realizar la prueba del funcionamiento del sensor de color en el robot LEGO Mindstorms EV3, la co-instructora realizó una presentación sobre el uso de sensores de luz en robótica industrial, características y funcionamiento de un sensor de luz en general y específicamente del sensor 45506 EV3. Luego se realizó la prueba de funcionamiento del robot, usando el sensor de color en los tres modo, con los estudiantes y con ayuda de los aprendices del Semillero de Robótica de la Tecnóacada presentes en el Club Jugando con la Luz.

MODO COLOR: Se encienden las luces LED roja, verde y azul en el frente del sensor. Si el sensor detecta un objeto que no corresponda a los valores descritos en la variable “color”, puede clasificarlo como un color similar o como “sin color”. Se corrió el programa en el robot y se verificó su correcto funcionamiento. Posteriormente se usó el software LEGO Mindstorms Education EV3 como osciloscopio para visualizar las señales mientras el programa se ejecutaba en el robot.

MODO INTENSIDAD DE LUZ AMBIENTAL: Se enciende una luz LED azul tenue en el frente del sensor, la cual no afecta la medición de la luz. Puede usar este modo para detectar el brillo de las luces de la habitación o cuando otras fuentes de luz brillen en el sensor. Antes de iniciar se calibró el sensor con el software LEGO y se hicieron las lecturas en modo intensidad luz ambiental, según la Tabla 2.

<table>
<thead>
<tr>
<th>Posición sensor</th>
<th>Medición intensidad de luz</th>
<th>Salida motores programación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luz ambiente</td>
<td>30% a 35%</td>
<td>Los motores giran con una potencia entre 30 y 35.</td>
</tr>
<tr>
<td>Con la linterna agarrando el sensor</td>
<td>70% al 90%</td>
<td>Los motores giran rápido</td>
</tr>
<tr>
<td>Obstaculizando el paso de luz en el sensor</td>
<td>Cerca al 0%</td>
<td>Los motores giran despacio</td>
</tr>
</tbody>
</table>

Tabla 2. Calibración sensor de color modo luz ambiental

Modo Intensidad de luz reflejada: Se enciende una luz LED roja en el frente del sensor. En este modo se mide el porcentaje de la luz total que se refleja en el sensor. Si el sensor está cerca de un objeto o de una superficie, esta luz roja se refleja en el objeto e ingresa al sensor para que la detecte; los tonos más oscuros reflejarán en menor medida la luz roja de regreso al sensor. El sensor debe colocarse cerca de la superficie que se está midiendo (pero sin tocarla), para reducir el efecto de las fuentes de luz exteriores. Antes de iniciar se calibra el sensor con el software LEGO y se hacen las lecturas del sensor en modo intensidad luz reflejada, como se observa en la Tabla 3.
<table>
<thead>
<tr>
<th>Posición sensor</th>
<th>Medición variable</th>
<th>Rango elegido</th>
</tr>
</thead>
<tbody>
<tr>
<td>En la línea</td>
<td>intensidad de luz</td>
<td>≤ 15 %</td>
</tr>
<tr>
<td>negra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>En la superficie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blanca</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3. Calibración sensor de color modo luz reflejada

El robot ejecuta la programación del seguidor de línea, en donde recorre la superficie de la pista LEGO (figura 4), iniciando por el costado derecho de esta; si el sensor detecta poca o ninguna luz (línea negra 10 % a 15 %) el robot gira hacia la izquierda y si detecta una intensidad de luz reflejada cercana a 100 (mayor al 15%) el robot gira nuevamente a la derecha, buscando la línea negra, con lo que se genera un movimiento de zig-zag.

![Figura 4. Robot seguidor de línea con sensor de color en modo intensidad de luz reflejada. a) Robot seguidor de línea en a pista. b) Señal de sensor en el software Lego Mindstorms Education EV3; se muestra en un valor de 10 a 15 % cuando detecta poco o ningún reflejo de luz (línea negra) y un valor del 70 al 90 % cuando detecta un porcentaje de luz reflejada alto (superficie blanca). Se observa el movimiento en zig-zag del sensor.](image)

3. ANÁLISIS DE RESULTADOS

En el año 2018 se realizaron 161 clubes en 14 ciudades, 3016 estudiantes y 322 instructores. En Pereira participaron 80 chicos de Tecnocademia Risaralda y el programa Ondas, distribuidos en 4 clubes y específicamente, en el club Jugando con la Luz, participaron 20 estudiantes, como se observa en la Figura 10. El impacto generado por el programa ha sido significativo y hacer parte activa de el fue una experiencia enriquecedora.

Los Clubes de Ciencia Colombia reúnen a niños y jóvenes en torno a la ciencia, al igual que otros actores del ecosistema de innovación como las Instituciones Educativas que prestan sus locaciones para su realización, empresas privadas que apoyan y organizaciones públicas como el SENA, en esa semana se realizan proyectos en ciencia, tecnología e innovación a los que la mayoría de los jóvenes no logran acceder, guiados por profesionales y científicos, en donde se comparten experiencias y se establecen redes entre los estudiantes y los instructores de los clubes.

Los instructores comparten sus conocimientos, historia y pasión por su trabajo e introducen a los estudiantes en temas científicos de vanguardia implementando una combinación de actividades experimentales, computacionales y teóricas. Es a través de este modelo que se refuerza el pensamiento crítico, mientras que al mismo tiempo, se involucra al estudiante en un ambiente de colaboración que fortalece sus habilidades de comunicación. Todas estas actividades son compatibles con la filosofía de la Tecnocademia, en donde la formación por proyectos y la investigación van de la mano, por lo tanto pueden ser replicadas en las clases de la Línea de Robótica y ser profundizadas por los aprendices de los Semilleros, quienes en cada una de sus sesiones de trabajo desarrollan diferentes retos de aprendizaje.

El ejercicio de realizar un prototipo usando diferentes fases de una metodología de diseño mecatrónico se convierte en un reto para los aprendices, quienes ven como paso a paso la idea original va tomando forma, de manera ordenada, consistente y documentada. En la fase de diseño, a pesar de su abstracción, las ideas fluyen y a veces puede convertirse en algo abrumador, pero con la propuesta del enfoque mecatrónico, de dividir el robot en los subsistemas mecánico, electrónico (sensores) y de programación, se van concretando las opciones. En la construcción, la integración de la mecánica con los sensores permite un trabajo coordinado por parte de los aprendices y la facilitadora, dándose forma a lo abstracto. En la programación, como bien lo definen los aprendices, se le da “vida” al robot, nuevamente fluye la creatividad y el trabajo colaborativo para llegar a una programación definida. En este punto, la caracterización y calibración del sensor se convierte en una actividad clave, al igual que la visualización de las señales en el modo osciloscopio, pues es una actividad que normalmente no se realiza en las clases, por cuestiones de
tiempo, pero que resulta muy enriquecedora. Por último, el probar, documentar y compartir es una experiencia gratificante para la facilitadora y para los aprendices, pues permite que otras personas comprendan el proceso llevado a cabo y se den cuenta de la importancia de aplicar estos conocimientos en un contexto dado.

Figura 5. Instructores, apoyo y estudiantes del Club de Ciencias Jugando con la Luz

4. CONCLUSIONES

La experiencia de los aprendices y la facilitadora al dirigir una sesión en Clubes de Ciencia 2018: Jugando con la luz y compartir con los asistentes, fue extraordinaria. El ambiente que se genera por el trabajo colaborativo, en una inmersión de una semana, crea lazos entre sus participantes, que pueden durar mucho tiempo, como se evidencia en algunos aprendices que participaron en años anteriores. Los chicos del semillero de Robótica ven que su trabajo vale la pena y que sus conocimientos pueden ayudar a otros jóvenes como ellos, a que se interesen por las ciencias aplicadas.

Por otro lado, el proceso de diseño, construcción, programación, prueba y documentación usando una metodología definida, ordenada y sistemática, permite que el prototipo mecatrónico realizado responda a lo concebido en las fases iniciales. Este proceso se ha venido implementando exitosamente en las sesiones de la Línea de Robótica de la Tecnoacademia, usando diferentes tipos de herramientas para la creatividad, la innovación y la validación de productos; por esta razón se elige este modo de prototipado para la experiencia en el Club.

La metodología y las herramientas de diseño e innovación por sí mismas no son de mucha utilidad, si las personas que las usan no poseen competencias para el trabajo colaborativo, entrenamiento creativo básico y empoderamiento; es por esto que el ambiente generado y la inmersión intensiva de los Clubes de Ciencia son el escenario perfecto para la apropilación de los conocimientos científicos y de investigación. Desde la Tecnoacademia Risaralda se propone, como actividad final del 2018, realizar un piloto de Clubes de Ciencia por línea, donde el resultado pueda darse a conocer a la comunidad educativa, los padres de familia y el SENA. Se pretende incorporar más adelante a las sesiones en la Línea de Robótica, una mayor intreracción con otro tipo de sensores como el infrarrojo y el ultrasonido, para mejorar la experiencia de aprendizaje e incluir un diseño de experimentos para realizar algunas investigaciones por parte de los aprendices del semillero de la Tecnoacademia Risaralda, en la línea de Robótica que no solo se limite a realizar competencias de robots, sino que el diseño responda a una necesidad existente.

5. BIBLIOGRAFÍA

ar/