Resistencia química de concretos de activación alcalina ceniza volante/ escoria: Sulfatos y ácidos
PDF
XML
PDF (English)
XML (English)

Palabras clave

ácidos
ceniza volante
geopolimeros
propiedades mecánicas
resistencia química
sulfatos

Cómo citar

Valencia-Saavedra, W. G., Angulo-Ramírez, D. E., & Mejia de Gutiérrez, R. (2018). Resistencia química de concretos de activación alcalina ceniza volante/ escoria: Sulfatos y ácidos. Informador Técnico, 82(1), 67-77. https://doi.org/10.23850/22565035.1351

Resumen

Una de las características más importantes del concreto en adición a sus propiedades mecánicas es su durabilidad, que se asocia con la vida en servicio de las estructuras expuestas a ciertas condiciones o ambientes; esta propiedad es requerida para definir los potenciales campos de aplicación y facilitar la comercialización de nuevos materiales cementantes. En este estudio, se evaluó la resistencia química de un concreto de activación alcalina basado en cenizas volantes (CV) y escoria de alto horno (ESC) en relación 80/20; como material de referencia se utilizó un concreto a base de cemento convencional (OPC). La resistencia a la compresión del concreto Geo CV /ESC a 28 días de curado normal fue de 42,9 MPa, 26% superior a la reportada por el concreto OPC. Geo CV/ESC expuesto a sulfatos hasta la edad de 180 días no muestra expansión y la pérdida de resistencia a la compresión no es significativa (2%) en comparación con OPC (39%). En el caso de la exposición a los ácidos, Geo CV/ESC presenta una pérdida de resistencia del 39% y OPC de hasta el 80%. Estas características demuestran una mayor resistencia química del concreto de activación alcalina y por tanto su potencial uso en ambientes agresivos.

https://doi.org/10.23850/22565035.1351
PDF
XML
PDF (English)
XML (English)

Citas

Abora, K., Beleña, I., Bernal, S. A., Dunster, A., Nixon, P. A., Provis, J. L., … Winnefeld, F. (2014). Durability and Testing – Chemical Matrix Degradation Processes. En J. L. Provis y J. S. J. van Deventer (Eds.), Alkali Activated Materials (177-221). Netherlands: Springer. doi: https://doi.org/10.1007/978-94-007-7672-2_8

ACI 201.2R-16 (2016). American Concrete Institute. Guide to Durable Concrete. Reported by ACI Committee 201.American Concrete Institute: Michigan, Estados Unidos.

Allahverdi, A., y Skvara, F. (2005). Sulfuric acid attack on hardened paste of geopolymer cements-Part 1. Mechanism of corrosion at relatively high concentrations. Ceramics Silikaty, 49(4), 225.

Allahverdi, A., y Skvara, F. (2006). Sulfuric acid attack on hardened paste of geopolymer cements-part 2. Corrosion mechanism at mild and relatively low concentrations. Ceramics Silikaty, 50(1), 1.

ASTM C618-12 (2012). American Society for Testing and Materials. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. American Society for Testing and Materials: Philadelphia, Estados Unidos.

ASTM C1012 / C1012M (2012). American Society for Testing and Materials. Standard Test Method for Length Change of Hydraulic Cement Mortars Exposed to a sulfate Solution. American Society for Testing and Materials: Philadelphia, Estados Unidos.

ASTM C109 / C109M (2012). American Society for Testing and Materials. Standard Test Method for Compresive Strength of Hydraulic Cement Mortars (Using 2-in. or 50-mm Cube Sécomens). American Society for Testing and Materials: Philadelphia, Estados Unidos.

Aye, T., y Oguchi, C. T. (2011). Resistance of plain and blended cement mortars exposed to severe sulfate attacks. Construction and Building Materials, 25(6), 2988-2996. doi: https://doi.org/10.1007/978-94-007-7672-2_8

Bakharev, T. (2005a). Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35(6), 1233-1246. doi: https://doi.org/10.1016/j.cemconres.2004.09.002

Bakharev, T. (2005b). Resistance of geopolymer materials to acid attack. Cement and Concrete Research, 35(4), 658-670. doi: https://doi.org/10.1016/j.cemconres.2004.06.005

Chindaprasirt, P., Paisitsrisawat, P., y Rattanasak, U. (2014). Strength and resistance to sulfate and sulfuric acid of ground fluidized bed combustion fly ash–silica fume alkali-activated composite. Advanced Powder Technology, 25(3), 1087-1093. doi: https://doi.org/10.1016/j.apt.2014.02.007

Crammond, N. J. (2003). The thaumasite form of sulfate attack in the UK. Cement and Concrete Composites, 25(8), 809-818. doi: https://doi.org/10.1016/S0958-9465(03)00106-9

Davidovits, J. (2005). Geopolymer, Green Chemistry and Sustainable Development Solutions: Proceedings of the World Congress Geopolymer 2005. Geopolymer Institute.

EMPA -SIA 162/1 (1989). Swiss Federal Laboratories for Materials Science and Technologies. Test No. 5 –Water Conductivity. Swiss Federal Laboratories for Materials Science and Technologies: Zurich, Suiza

Fernández-Jiménez, A., y Palomo, Á. (2009). Propiedades y aplicaciones de los cementos alcalinos. Revista Ingeniería de Construcción, 24(3), 213-232. doi: https://doi.org/10.4067/S0718-50732009000300001

Gao, X., Yu, Q. L., y Brouwers, H. J. H. (2015). Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Construction and Building Materials, 80, 105-115. doi: https://doi.org/10.1016/j.conbuildmat.2015.01.065

Irassar, E. F., Bonavetti, V. L., Trezza, M. A., y González, M. A. (2005). Thaumasite formation in limestone filler cements exposed to sodium sulphate solution at 20 °C. Cement and Concrete Composites, 27(1), 77-84. doi: https://doi.org/10.1016/j.cemconcomp.2003.10.003

Ismail, I., Bernal, S. A., Provis, J. L., Hamdan, S., y van Deventer, J. S. J. (2012). Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Materials and Structures, 46(3), 361-373. doi: https://doi.org/10.1617/s11527-012-9906-2

Izquierdo, S., Rodríguez, E. D., y Mejía de Gutiérrez, R. (2015). Resistance to acid corrosion of blended cements mortars with spent fluid catalytic cracking (sFCC) catalyst. Revista Ingeniería de Construcción, 30(3), 169–176. doi: https://doi.org/10.4067/S0718-50732015000300002

Komljenović, M., Baščarević, Z., Marjanović, N., y Nikolić, V. (2013). External sulfate attack on alkali-activated slag. Construction and Building Materials, 49, 31-39. doi: https://doi.org/10.1016/j.conbuildmat.2013.08.013

Kovalchuk, G., Fernández-Jiménez, A., y Palomo, A. (2007). Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development – Part II. Fuel, 86(3), 315-322. doi: https://doi.org/10.1016/j.fuel.2006.07.010

Mehta, P. K., y Monteiro, P. J. M. (2006). Concrete Microestructure, Properties, and Material (Third Edit, p. 647). The McGraw Hill Companies.

Nath, P., y Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163-171. doi:https://doi.org/10.1016/j.conbuildmat.2014.05.080

Palomo, A., Grutzeck, M. W., y Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323-1329. doi: https://doi.org/10.1016/S0008-8846(98)00243-9

Puertas, F., Gutiérrez, R., Fernández-Jiménez, A., Delvasto, S., y Maldonado, J. (2002). Morteros de cementos alcalinos. Resistencia química al ataque por sulfatos y al agua de mar. Materiales de Construcción, 52(267),55-71. doi: https://doi.org/10.3989/mc.2002.v52.i267.326

Ranjbar, N., Mehrali, M., Behnia, A., Alengaram, U. J., y Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials & Design, 59, 532-539. doi: https://doi.org/10.1016/j.matdes.2014.03.037

Ryu, G. S., Lee, Y. B., Koh, K. T., y Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409-418. doi: https://doi.org/10.1016/j.conbuildmat.2013.05.069

Sata, V., Sathonsaowaphak, A., y Chindaprasirt, P. (2012). Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cement and Concrete Composites, 34(5), 700-708. doi: https://doi.org/10.1016/j.cemconcomp.2012.01.010

Singh, B., Ishwarya, G., Gupta, M., y Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78-90. doi: https://doi.org/10.1016/j.conbuildmat.2015.03.036

Škvára, F., Jílek, T., y Kopeckỳ, L. (2005). Geopolymer materials based on fly ash. Ceram.-Silik, 49(3), 195–204.

Snelson, D. G., y Kinuthia, J. M. (2010). Resistance of mortar containing unprocessed pulverised fuel ash (PFA) to sulphate attack. Cement and Concrete Composites, 32(7), 523-531. doi: https://doi.org/10.1016/j.cemconcomp.2010.03.001

Song, X. J., Marosszeky, M., Brungs, M., y Munn, R. (2005). Durability of fly ash based geopolymer concrete against sulphuric acid attack. International Conference on Durability of Building Materials and Components, Lyon, France (123–129). Recuperado de http://www.irbnet.de/daten/iconda/06059017363.pdf

Thokchom, S., Ghosh, P., y Ghosh, S. (2009). Resistance of fly ash based geopolymer mortars in sulfuric acid. arPN Journal of engineering and applied Sciences, 4(1), 65-70. Recuperado de http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.8765&rep=rep1&type=pdf

Valencia, W., Mejía de Gutiérrez, R., y Gordillo, M., (2018). Geopolymeric concretes based on fly ash with high unburned content. Construction and Building Materials, 165, 697–706. doi: https://doi.org/10.1016/j.conbuildmat.2018.01.071

Van Jaarsveld, J. G. S., Van Deventer, J. S. J., y Lorenzen, L. (1997). The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications. Minerals Engineering, 10(7), 659-669. doi:https://doi.org/10.1016/S0892-6875(97)00046-0

Wallah, S. E., y Rangan, B. V. (2006). Low-calcium fly ash-based geopolymer concrete: long-term properties. Res. Report-GC2, Curtin University, Australia. pp, 76–80.

Yang, S., Zhongzi, X., y Mingshu, T. (1996). The process of sulfate attack on cement mortars. Advanced Cement Based Materials, 4(1), 1-5. doi: https://doi.org/10.1016/S1065-7355(96)90057-7 7

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.

Descargas

La descarga de datos todavía no está disponible.