Concreto autocompactante con altos contenidos de subproductos de la combustión de carbón

Palabras clave: concreto autocompactante, ceniza volante, escoria, auto-compactabilidad, propiedades en estado fresco

Resumen

El concreto autocompactante (CAC) se ha considerado como un gran logro en la tecnología del concreto debido a sus grandes ventajas como la auto-compactabilidad. Para tener esta propiedad el concreto fresco debe demostrar una alta fluidez, resistencia a la segregación y una buena cohesión. Con el propósito de evaluar estas propiedades, además de utilizar un subproducto de la combustión del carbón como la ceniza volante (CV) y la escoria de parrilla (E) se prepararon varias mezclas de concreto autocompactante remplazando el cemento en un 35% y 50% de cada una de estas adiciones. A los cuales se les evaluaron sus propiedades, tanto en estado fresco como en endurecido, las propiedades en estado fresco fueron evaluadas mediante el flujo de asentamiento, el embudo en V y la caja en L, en estado endurecido se evaluaron propiedades mecánicas (resistencia a la compresión, tracción indirecta y flexión) y de permeabilidad (succión capilar, absorción y porosidad y resistencia a cloruros). Todos los CAC mostraron buenaspropiedades en estado fresco y desarrollaron a los 28 días de curado resistencias a la compresión en un rango de 34 y 48 MPa. Los resultados muestran que el empleo de subproductos de la combustión del carbón pueden ser incorporados en la elaboración de CAC.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Yimmy Fernando Silva Urrego, Universidad del Valle
Colombiano. Estudiante de Doctorado en Ingeniería de los Materiales. M.Sc. en ingeniería. Universidad del Valle. Grupo Materiales Compuestos GMC. Cali, Colombia.
William Gustavo Valencia Saavedra, Universidad del Valle
Colombiano. Estudiante de Doctorado en Ingeniería de los Materiales. Ingeniero de Materiales. Universidad del Valle. Grupo Materiales Compuestos GMC. Cali, Colombia.
Silvio Delvasto Arjona, Universidad del Valle
Silvio Delvasto Arjona. Colombiano. Ph.D. Profesor Titular, Universidad del Valle. Grupo Materiales Compuestos GMC. Cali, Colombia.

Referencias

ASTM International. (2012). Standard test method for compressive strength of cylindrical concrete specimens (ASTM C39 / C39M). West Conshohocken, PA.

ASTM International. (2015). Standard Specification for Portland Cement (ASTM C150/150M), West Conshohocken,PA.

ASTM International. (2010). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading) (ASTM C293/C293M) West Conshohocken, PA.

ASTM International. (2011). Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. (ASTM C311). West Conshohocken, PA.

ASTM International. (2011). Standard test method for split tensile strength of cylindrical concrete specimens (ASTM C496/C496M). West Conshohocken, PA.

ASTM International. (2013) Standard Test Method for Density, Absorption, and Voids in Hardened Concrete (ASTM C642). West Conshohocken, PA.

ASTM International.(2012) Test method for electrical indication of concrete’s ability to resist chloride ion penetration (ASTM C1202). West Conshohocken, PA.

Bouzoubaâ, N., y Lachemi, M. (2001). Self-compacting concrete incorporating high volumes of class F fly ash:Preliminary results. Cement and Concrete Research. 31(3) 413-420. doi: https://doi.org/10.1016/S0008-8846(00)00504-4

Chhorn, C., Hong, S.J., y Lee, S.H. (2018). Relationship between compressive and tensile strengths of rollercompacted concrete. Journal of traffic and transportation engineering, 5(3), 215-223. doi: https://doi.org/10.1016/j.jtte.2017.09.002

EFNARC (2002). EFNARC, Specifications and guidelines for self-compacting concrete. In: European federation for specialist construction chemicals & concrete systems, 2002. http://www.efnarc.org/pdf/SandGforSCC.PDF

El-Gammal, A., Abdel-Gawad, A.K., El-Sherbini, Y., y Shalaby, A. (2010). Compressive strength of concrete utilizing waste tire rubber. Journal of Emerging Trends in Engineering and Applied Sciences (1), 1, 96-99.

Felekoğlu, B., Tosun, K., Baradan, B., Altun, A., y Uyulgan, B. (2006). The effect of fly ash and limestone fillers on the viscosity and compressive strength of self-compacting repair mortars. Cement and Concrete Research, 36(9), 1719-1726. doi: https://doi.org/10.1016/j.cemconres.2006.04.002

Felekoğlu, B., Türkel, S., y Baradan, B. (2007). Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Building and Environment, 42(4), 1795–1802. doi: https://doi.org/10.1016/j.buildenv.2006.01.012

Ganjian, E., Khorami, M., y Maghsoudi, A.A. (2009). Scrap-tyre-rubber replacement for aggregate and filler in concrete. Construction and Building Materials, 23(5): 1828-1836. doi: https://doi.org/10.1016/j.conbuildmat.2008.09.020

Karakurt, C., Çelik, A. O., Yılmazer, C., Kiriççi, V., y Özyasar, E. (2018). CFD simulations of self-compacting concrete with discrete phase modeling. Construction and Building Materials, 186, 20-30. doi: https://doi.org/10.1016/j.conbuildmat.2018.07.106

Kasemchaisiri, R., y Tangtermsirikul, S. (2008). Properties of self-compacting concrete in corporating bottom ash as a partial replacement of fine aggregate. Science Asia 34, 087-095. doi: https://doi.org/10.2306/scienceasia1513-1874.2008.34.087

Khatib, J.M. (2008). Performance of self-compacting concrete containing fly ash. Construction and Building Materials, 22(9), 1963-1971. doi: https://doi.org/10.1016/j.conbuildmat.2007.07.011

Kutchko, B.G., y Kim, A.G. (2006). Fly ash characterization by SEM–EDS. Fuel, 85(17-18), 2537-2544. doi: https://doi.org/10.1016/j.fuel.2006.05.016

Liu, M. (2010). Self-compacting concrete with different levels of pulverized fuel ash. Construction and Building Materials, 24(7), 1245-1252. doi: https://doi.org/10.1016/j.conbuildmat.2009.12.012

Lorca, P., Calabuig, R., Benlloch, J., Soriano, L., y Payá, J. (2014). Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition. Materials & Design, 64, 535-541. doi: https://doi.org/10.1016/j.matdes.2014.08.022

Medina, A., Gamero, P., Querol, X., Moreno, N., De León, B., Almanza, M., Vargas, G., Izquierdo, M., Font, O. (2010). Fly ash from a Mexican mineral coal I: Mineralogical and chemical characterization. Journal of Hazardous Materials, 181 (1-3): 82-90. doi: https://doi.org/10.1016/j.jhazmat.2010.04.096

Mohamed, H.A. (2011). Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions. Ain Shams Engineering Journal, 2(2), 79-86. doi: https://doi.org/10.1016/j.asej.2011.06.001

Nehdi, M., Pardhan, M., y Koshowski, S. (2004). Durability of self-consolidating concrete incorporating highvolume replacement composite cements. Cement and Concrete Research,34(11), 2103-2112. doi: https://doi.org/10.1016/j.cemconres.2004.03.018

Neville, A.M., y Brooks, J.J. (1988). Concrete Technology. Harlow, Essex: Pearson Educaiton.

Nguyen, H-A., Chang, P-A., Shih, J-Y., y Djayaprabha, H.S. (2018). Enhancement of low-cement self-compacting concrete with dolomite powder. Construction and Building Materials, 161, 539–546. doi: https://doi.org/10.1016/j.conbuildmat.2017.11.148

Okamura, H., y Ouchi, M., (2003). Self-Compacting Concrete. Journal of Advanced Concrete Technology. 1(1), 5-15.doi: https://doi.org/10.3151/jact.1.5

Omrane, M., Kenai, S., Kadri, E-H., y Aït-Mokhtar, A. (2017). Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan. Journal of Cleaner Production. 165, 415-430. doi: https://doi.org/10.1016/j.jclepro.2017.07.139

Patel, R., Hossain, K. M. A., Shehata, M., y Bouzoubaa, N. (2004). Development of Statistical Models for Mixture Design of High-Volume Fly Ash Self-Consolidating Concrete. Materials Journal, 101(4): 294-302. doi: https://doi.org/10.14359/13363

Rahman, M.M., Usman, M., y Al-Ghalib, A.A. (2012). Fundamental properties of rubber modified selfcompacting concrete (RMSCC). Construction and Building Materials, 36, 630-637. doi: https://doi.org/10.1016/j.conbuildmat.2012.04.116

Ryan, P.C., y O’Connor, A. (2016). Comparing the durability of self-compacting concretes and conventionally vibrated concretes in chloride rich environments. Construction and Building materials, 120, 504-513. doi: https://doi.org/10.1016/j.conbuildmat.2016.04.089

Siddique, R. (2011). Properties of self-compacting concrete containing class F fly ash. Materials & Design. 32(3), 1501–1507. doi: https://doi.org/10.1016/j.matdes.2010.08.043

Siddique, R., Aggarwal, P., Aggarwal, Y. (2012). Influence of water/powder ratio on strength properties of self-compacting concrete containing coal fly ash and bottom ash. Construction and Building Materials. 29, 73–81. doi: https://doi.org/10.1016/j.conbuildmat.2011.10.035

Sonebi, M. (2004). Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans. Cement and Concrete Research, 34(7), 1199-1208. doi: https://doi.org/10.1016/j. cemconres.2003.12.022

Swiss Society of engineers and architects (SIA). (1989). Norma de ensayo Swiss Standard - SIA 162/1 - Succión Capilar.

Topçu, İ.B., y Bilir, T. (2009). Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete. Materials & Design, 30(8), 3056-3065. doi: https://doi.org/10.1016/j.matdes.2008.12.011

Uygunoglu, T., y Topçu, I.B.(2010). The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars. Construction and Building. Materials, 24 (7),1141–1150. doi: https://doi.org/10.1016/j.conbuildmat.2009.12.027

Uysal, M., y Sumer, M. (2011). Performance of self-compacting concrete containing different mineral admixtures. Construction and Building Materials, 25(11), 4112–4120. doi: https://doi.org/10.1016/j.conbuildmat.2011.04.032

Uysal, M., y Yilmaz, K. (2011). Effect of mineral admixtures on properties of self-compacting concrete. Cement and Concrete Composites, 33(7), 771-776. doi: https://doi.org/10.1016/j.cemconcomp.2011.04.005

Vakhshouri, B., y Nejadi, S. (2018). Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing, 280, 13–22. doi: https://doi.org/10.1016/j.neucom.2017.09.099

Valcuende, M., Parra, C., Marco, E., Garrido, A., Martínez, E., y Cánoves, J., (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Construction and Building Materials, 28(1), 122-128. doi: https://doi.org/10.1016/j.conbuildmat.2011.07.029

Wongkeo, W., Thongsanitgarn, P., y Chaipanich, A. (2012). Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Materials & Design (1980-2015), 36, 655-662. doi: https://doi.org/10.1016/j.matdes.2011.11.043

Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A., y Chaipanich, A. (2014). Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Materials & Design, 64, 261 - 269. doi: https://doi.org/10.1016/j.matdes.2014.07.042

Yu, Z., Ni, C., Tang M., y Shen, X., (2018). Relationship between water permeability and pore structure of Portland cement paste blended with fly ash. Construction and building materials. 175, 458-466. doi: https://doi.org/10.1016/j.conbuildmat.2018.04.147

Publicado
2018-09-28
Cómo citar
Silva Urrego, Y. F., Valencia Saavedra, W. G., & Delvasto Arjona, S. (2018). Concreto autocompactante con altos contenidos de subproductos de la combustión de carbón. Informador Técnico, 82(2), 147-159. https://doi.org/10.23850/22565035.1485
Sección
Artículo de Investigación

Artículos más leídos del mismo autor/a