Técnicas aceleradas para evaluar la susceptibilidad a corrosión de aceros embebidos en morteros con adiciones minerales expuestos a cloruros
PDF
HTML
PDF (English)
XML
XML (English)

Palabras clave

Metacaolín
humo de sílice
morteros adicionados
ataque por cloruros
corrosión

Cómo citar

Peralta Muñoz, E., Aguirre, A. M., & Mejía de Gutiérrez, R. (2015). Técnicas aceleradas para evaluar la susceptibilidad a corrosión de aceros embebidos en morteros con adiciones minerales expuestos a cloruros. Informador Técnico, 79(2), 137-145. https://doi.org/10.23850/22565035.158

Resumen

Este artículo estudia el comportamiento a la corrosión de morteros reforzados de cemento portland, sin adiciones y con adiciones de metacaolín (MK) y humo de sílice (SF), en presencia de cloruros. La proporción de la adición utilizada en las mezclas fue del 10% en peso como reemplazo del cemento. Se prepararon prototipos sin y con acero de refuerzo. En los primeros se determinó la resistencia a la compresión, absorción, porosidad, y permeabilidad a los cloruros. Las probetas de mortero reforzado se expusieron a cloruros (NaCl 3,5%) y se aplicaron dos técnicas aceleradas de corrosión: ciclos de humectación-secado y voltaje impreso; en ambos casos se utilizó como ambiente de referencia agua potable. El avance del proceso de corrosión en el acero se evaluó mediante la técnica electroquímica de resistencia a la polarización lineal (LPR). Los resultados mostraron que tanto a 28 como a 90 días de curado, las adiciones aumentan la resistencia a la compresión del mortero y contribuyen positivamente a reducir la susceptibilidad del material cementicio a la permeabilidad de cloruros. De las adiciones evaluadas, se destaca el desempeño mecánico de la mezcla con 10% de MK, representado en un incremento del 51,9% respecto a cemento Portland ordinario (OPC). Los coeficientes de absorción capilar de los morteros adicionados fueron hasta un 31% menores que los correspondientes de OPC, lo cual coincide con la reducida permeabilidad a cloruros (≤ 1000 coulombios) evaluada con base en la Norma ASTM C1202. Respecto a los resultados de corrosión se aprecia la misma tendencia de comportamiento en las mezclas, independientemente de la técnica acelerada utilizada. El mejor desempeño corresponde a la mezcla que contiene MK, seguido de SF y OPC. Cabe anotar, que la corriente de corrosión en los prototipos OPC es reducida hasta en un 90% al incorporar MK. De las técnicas aceleradas empleadas en el presente estudio se sugiere utilizar la de voltaje impreso debido al corto tiempo de obtención de los resultados.
https://doi.org/10.23850/22565035.158
PDF
HTML
PDF (English)
XML
XML (English)

Citas

Aguirre, A.M., Mejía, R. (2013) Durabilidad del hormigón armado expuesto a condiciones agresivas, Materiales de Construcción, 63(309), 7-38. Recuperado de http://dx.doi.org/10.3989/mc.2013.00313

https://doi.org/10.3989/mc.2013.00313

Andrade, C., González, J.A. (1978) Quantitative measurements of corrosion measurements, Werkstoffe und Korrosion, 29, 515-519.

https://doi.org/10.1002/maco.19780290804

Andrade, C., Alonso, C. (1996) Corrosion rate monitoring in the laboratory and onsite, Construction and Building, 10(5), 315-328. Recuperado de http://dx.doi.org/10.1016/0950-0618(95)00044-5

https://doi.org/10.1016/0950-0618(95)00044-5

Andrade, C., Buják, R. (2013) Effects of some mineral additions to Portland cement on reinforcement corrosion, Cement and Concrete Research, 53, 59-67. Recuperado de http://dx.doi.org/10.1016/j.cemconres.2013.06.004

https://doi.org/10.1016/j.cemconres.2013.06.004

Angst, U., Elsener, B., Larsen, C. K., Vennesland, Ø. (2009) Critical chloride content in reinforced concrete - A review, Cement and Concrete Research, 39(12), 1122-1138. Recuperado de http://dx.doi.org/10.1016/j.cemconres.2009.08.006

https://doi.org/10.1016/j.cemconres.2009.08.006

ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. Recuperado de: http://www.astm.org/Standards/C642.htm.

ASTM C1585-13 Standard Test Method for Measurement of Rate of Absorption of water by Hydraulic- Cement Concretes. Recuperado de: http://www.astm.org/Standards/C1585.htm.

ASTM C1202-12 Standard Test Method for Electrical Indication of Cocnrete´s Ability to Resist Chloride Ion Penetration. Recuperado de: http://www.astm.org/Standards/C1202.htm.

Badogiannis, E., Sfikas, I., Voukia, D., Trezos, K., Tsivilis, S. (2015a). Durability of metakaolin Self-Compacting Concrete, Construction and Building Materials, 85, 133-141. doi:10.1016/j.conbuildmat.2015.02.023

https://doi.org/10.1016/j.conbuildmat.2015.02.023

Badogiannis, E., Aggeli, E., Papadakis, V.G., Tsivilis S. (2015b) Evaluation of chloride-penetration resistance of metakaolin concrete by means of a diffusion - Binding model and of the k-value concept, Cement and Concrete Composites, 63,1- 7. doi:10.1016/j.cemconcomp.2015.07.012

https://doi.org/10.1016/j.cemconcomp.2015.07.012

Basunful, I.A., Dehwah, H.A., Maslehuddin, M. (1994). Durability evaluation of repair materials in hot air environments, SP-145 Proceedings Third Cammet ACI International Conference on Durability of Concrete, 835-850, Nice, France.

Bogă, A. R., Topçu, I. B. (2012) Influence of fly ash on corrosion resistance and chloride ion permeability of concrete, Construction and Building Materials, 31, 258-264.Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2011.12.106

https://doi.org/10.1016/j.conbuildmat.2011.12.106

Courard, L., Darimont, A., Schouterden, M., Ferauche, F., Willem, X., Degeimbre, R. (2003). Durability of mortars modified with metakaolin, Cement and Concrete Research, 33(9), 1473-1479. Recuperado de: http://dx.doi.org/10.1016/S0008-8846(03)00090-5

https://doi.org/10.1016/S0008-8846(03)00090-5

Diab, A. M., Elyamany, H. E., Elmoty, A. (2011). Effect of mix proportions, seawater curing medium and applied voltages on corrosion resistance of concrete incorporating mineral admixtures, Alexandria Engineering Journal, 50, 65-78. Recuperado de: http://dx.doi.org/10.1016/j.aej.2011.01.013

https://doi.org/10.1016/j.aej.2011.01.013

EN206-1 (2008). Hormigón - Parte 1: Especificación, comportamiento, fabricación y conformidad.

Farahani, A., Taghaddos, H., Shekarchi, M. (2015). Prediction of long-term chloride diffusion in silica fume concrete in a marine environment, Cement and Concrete Composites, 59, 10-17. doi:10.1016/j.cemconcomp.2015.03.006

https://doi.org/10.1016/j.cemconcomp.2015.03.006

Ferraro, R. M., Nanni, A. (2012). Effect of off-white rice husk ash on strength, porosity, conductivity and corrosion resistance of white concrete, Construction and Building Materials, 31, 220-225. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2011.12.010

https://doi.org/10.1016/j.conbuildmat.2011.12.010

Güneyisi, E., Geso'lu, M., Gesogˇlu, F., Mermerdaş, K. (2013) Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin, Composites Part B: Engineering, 45(1), 1288- 1295. Recuperado de: http://dx.doi.org/10.1016/j.compositesb.2012.09.085.

https://doi.org/10.1016/j.compositesb.2012.09.085

Güneyisi, E., Özturan, T., Geso'lu, M. (2007) Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements, Building and Environment, 42(7), 2676-2685. Recuperado de: http://dx.doi.org/10.1016/j.buildenv.2006.07.008

https://doi.org/10.1016/j.buildenv.2006.07.008

Ha, T-H., Muralidharan, S., Bae, J-H., Ha, Y-Ch., Lee, H-G., Park, K-W., Kim, D-K. (2007). Accelerated short-term techniques to evaluate the corrosion performance of steel in fly ash blended concrete, Building and Environment, 42, 78-85. Recuperado de: http://dx.doi.org/10.1016/j.buildenv.2005.08.019

https://doi.org/10.1016/j.buildenv.2005.08.019

Hassan, A.A.A., Lachemi, M., Hossain, K. (2012) Effect of metakaolin and silica fume on the durability of self-consolidating concrete, Cement and Concrete Composites, 34(6), 801- 807. Recuperado de http://dx.doi.org/10.1016/j.cemconcomp.2012.02.013

https://doi.org/10.1016/j.cemconcomp.2012.02.013

Horsakulthai, V., Phiuvanna, S., Kaenbud, W. (2011). Investigation on the corrosion resistance of bagasse-rice husk-wood ash blended cement concrete by impressed voltage, Construction and Building Materials, 25(1), 54-60. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2010.06.057

https://doi.org/10.1016/j.conbuildmat.2010.06.057

Kannan V., Ganesan K. (2014). Chloride and chemical resistance of self-compacting concrete containing rice husk ash and metakaolin, Construction and Building Materials, 51(31), 225-234. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2013.10.050

https://doi.org/10.1016/j.conbuildmat.2013.10.050

Keleştemur, O., Demirel, B. (2015). Effect of metakaolin on the corrosion resistance of structural lightweight concrete, Construction and Building Materials, 81, 172-178. doi:10.1016/j. conbuildmat.2015.02.049

Khan, M. I., Siddique, R. (2011). Utilization of silica fume in concrete: Review of durability properties, Resources, Conservation and Recycling, 57, 30-35. Recuperado de: http://dx.doi.org/10.1016/j.resconrec.2011.09.016

https://doi.org/10.1016/j.resconrec.2011.09.016

Kim, H-S., Lee, S-H., Moon, H-Y. (2007). Strength properties and durability aspects of high strength concrete using Korean metakaolin, Construction and Building Materials, 21(6), 1229-1237. Recuperado de http://dx.doi.org/10.1016/j.conbuildmat.2006.05.007

https://doi.org/10.1016/j.conbuildmat.2006.05.007

M. de Gutiérrez, R., Delvasto, S., Talero, R. (2000) Una nueva puzolana para materiales cementicios de elevadas prestaciones, Materiales de Construcción, 50(260), 5-13. Recuperado de: http://dx.doi.org/10.3989/mc.2000.v50.i260.386

https://doi.org/10.3989/mc.2000.v50.i260.386

Mejía de Gutiérrez, R., Torres J., Guerrero, C.E. (2004) Análisis del proceso térmico de producción de una puzolana, Materiales de Construcción, 54(274), 65-72. Recuperado de http://dx.doi.org/10.3989/mc.2004.v54.i274.233

https://doi.org/10.3989/mc.2004.v54.i274.233

NT BUILD 356 (1989) Nordtest method. Concrete, repairing materials and protective coating: Embedded steel method, chloride permeability.

NTC 5551 (2007), Durabilidad de Estructuras de Concreto, Colombia

Parande, A. K., Babu, R. B., Karthik, M. A., Kumaar, K. K., Palaniswamy, N. (2008). Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/ mortar, Construction and Building Materials, 22(3), 127-134. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2006.10.003

https://doi.org/10.1016/j.conbuildmat.2006.10.003

Poon, C.S., Kou, S.C., Lam, L. (2006) Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete, Construction and Building Materials, 20(10), 858-865. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2005.07.001

https://doi.org/10.1016/j.conbuildmat.2005.07.001

Ramezanianpour, A.A., Jovein, H.B. (2012) Influence of metakaolin as supplementary cementing material on strength and durability of concretes, Construction and Building Materials, 30, 470-479. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2011.12.050

https://doi.org/10.1016/j.conbuildmat.2011.12.050

Rao, G.A. (2001) Influence of silica fume on longterm strength of mortars containing different aggregate fractions, Cement and Concrete Research, 31(1), 7-12. Recuperado de http://dx.doi.org/10.1016/S0008-8846(00)00346-X

https://doi.org/10.1016/S0008-8846(00)00346-X

Sabir, B. B., Wild, S., Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: a review, Cement and Concrete Composites, 23(6), 441-454. Recuperado de http://dx.doi.org/10.1016/S0958-9465(00)00092-5

https://doi.org/10.1016/S0958-9465(00)00092-5

Saojeng C., Weiting L. (2013) Effects of silica fume and steel fiber on chloride ion penetration and corrosion behavior of cement-based composites, Journal of Wuhan University of Technology-Mater. Sci. Ed., 28(2), 279-284, Recuperado de http://dx.doi.org/10.1007/s11595-013-0679-4

https://doi.org/10.1007/s11595-013-0679-4

Saraswathy, V., Song, H-W. (2008) Evaluation of Cementitious Repair Mortars for Corrosion Resistance., Portugaliae Electrochimica Acta, 26(5), 417-432. http://www.scielo.oces.mctes.pt/pdf/pea/v26n5/v26n5a04.pdf

Shekarchi, M., Rafiee, A., Layssi, H. (2009). Longterm chloride diffusion in silica fume concrete in harsh marine climates, Cement and Concrete Composites, 31(10), 769-775. Recuperado de http://dx.doi.org/10.1016/j.cemconcomp.2009.08.005

https://doi.org/10.1016/j.cemconcomp.2009.08.005

Shi, X., Xie, N., Fortune, K., Gong, J. (2012). Durability of steel reinforced concrete in chloride environments: An overview, Construction and Building Materials, 30, 125-138. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2011.12.038

https://doi.org/10.1016/j.conbuildmat.2011.12.038

Siddique, R., Klaus, J. (2009) Influence of metakaolin on the properties of mortar and concrete: A review, Applied Clay Science, 43(3-4), 392-400. Recuperado de: http://dx.doi.org/10.1016/j.clay.2008.11.007

https://doi.org/10.1016/j.clay.2008.11.007

Siddique, R. (2011), Utilization of silica fume in concrete: Review of hardened properties, Resources, Conservation and Recycling, 55(11), 923-932. Recuperado de: http://dx.doi.org/10.1016/j.resconrec.2011.06.012

https://doi.org/10.1016/j.resconrec.2011.06.012

Song, H-W., Lee, C-H., Ann, K-Y. (2008) Factors influencing chloride transport in concrete structures exposed to marine environments, Cement and Concrete Composites, 30(2), 113-121. Recuperado de: http://dx.doi.org/10.1016/j.cemconcomp.2007.09.005

https://doi.org/10.1016/j.cemconcomp.2007.09.005

Song, H-W., Pack, S-W., Nam, S-H., Jang, J-C., Saraswathy, V. (2010) Estimation of the permeability of silica fume cement concrete, Construction and Building Materials, 24(3), 315-321. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2009.08.033

https://doi.org/10.1016/j.conbuildmat.2009.08.033

Topçu, I. B., Bogă, A. R. (2010) Effect of ground granulate blast-furnace slag on corrosion performance of steel embedded in concrete, Materials and Design, 31, 3358-3365. Recuperado de: http://dx.doi.org/10.1016/j.matdes.2010.01.057

https://doi.org/10.1016/j.matdes.2010.01.057

Torres-Agredo, J., Mejía, R., Delvasto, S. (2011) Efecto del porcentaje de adición de metacaolín en las propiedades finales del concreto adicionado, Ingeniería y Universidad, 15(1), 77- 90. Recuperado de: http://revistas.javeriana.edu.co/index.php/iyu/article/view/1130

Vejmelková, E., Pavlíková, M., Keppert, M., Keršner, Z., Rovnaníková, P., Ondráček, M., Sedlmajer, M., Černý, R. (2010) High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics, Construction and Building Materials, 24(8), 1404-1411. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2010.01.017

https://doi.org/10.1016/j.conbuildmat.2010.01.017

Zhang, W-M., Ba, H-J. (2013) Effect of silica fume addition and repeated loading on chloride diffusion coefficient of concrete, Materials and Structures, 46(7), 1183-1191. Recuperado de: http://dx.doi.org/10.1617/s11527-012-9963-6

https://doi.org/10.1617/s11527-012-9963-6

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.

Descargas

La descarga de datos todavía no está disponible.