Brake discs: A technological review from its analysis and assessment

Palabras clave: disc brake, Finite Elements Analysis (FEA), friction, temperature, cars


Braking systems are undoubtedly the most important component for road safety, since it determines the total or partial stop of a vehicle and, therefore, guarantees the physical integrity of passengers. Normally, the front brake discs and the remaining percentage absorb 70% of the kinetic energy produced within a vehicle by the rear brake discs, which tend to have the formof a drum brake. These systems benefit from friction to stop a moving vehicle, under the umbrella of hydraulic pressure that pushes the brake pads against the iron-cast disk. In this document, concepts of famous authors around the world on analysis and evaluation of brake discs are provided, which are carried out using a descriptive methodology and an estimation of the characteristics of the brake disc. The review is carried out in computer assisted design through several existing CAD software in the industry, as the main methodology applied to the development of certain research projects, where different geometric characteristics of the brake discs are considered, as well as problems related to wear and corrosion. This research project has shown that it is vital to incorporate existing computer assisted design software to predict performance, improve components and optimize the functionality of the brake system. In this way, road traffic safety and systems efficiency are achieved, which are a matter of great importance for the industry. It is vital to analyze brake systems through Finite Element Analysis (FEA), with the intention of achieving a broader vision of its performance, since the information collected reveals that the geometric characteristics of the brake and cooling ducts influence the heat dissipation. It depends on the form, the type of material and the application, the heat generated between the pad and the brake. Therefore, the heat is dissipated rapidly according to the analysis performed mathematically by the researchers, which are compared with the made in computer assisted design software.


La descarga de datos todavía no está disponible.

Biografía del autor/a

Ricardo García-León, Universidad Francisco de Paula Santander. Instituto Politecnico Nacional de Mexico
Estudiante de doctorado en ciencias de la ingeniería mecánica Magíster en ingeniería industrial Ingeniero mecánico


Abhang, Swapnil; Bhaskar, D. P. (2014). Design and Analysis of Disc Brake.International Journal of Engineering Trends and Technology, 8(4), 165–167.

Acosta-Alvarez, Iovanny; Pareja-Dangond, Diego (2019). Construcción de un banco de pruebas para el analisis del comportamiento al desgaste de los sistemas de frenos de disco automotrices (tesis de pregrado). Universidad Francisco de Paula Santander Ocaña, Colombia.

Aguayo-Ortiz, A.; Cardoso-Sakamoto, H.; Echeverría-Arjonilla, C.; Porta-Zepeda, D.; Stern-Forgach, C.; Monsivais-Galindo G. (2016). Calibration of a Background Oriented Schlieren (BOS). In Klapp, Jaime; Di G, Leonardo; Medina, Abraham; López, Abel; Ruiz-Chavarría, Gerardo (Eds.), Recent Advances in Fluid Dynamics with Environmental Applications (pp.103-114). Environmental Science and Engineering. Springer, Cham.

Andreaus, U.; Casini, P. (2001). Dynamics of friction oscillators excited by a moving base and/or driving force. Journal of Sound and Vibration, 245(4), 685-699.

Bagnoli, F.; Dolce, F.; Bernabei, M. (2009). Thermal fatigue cracks of fire fighting vehicles gray iron brake discs. Engineering Failure Analysis, 16(1), 152-163.

Baron-Saiz, C.; Ingrassia, T.; Nigrelli, V.; Ricotta, V. (2015). Thermal stress analysis of different full and ventilated disc brakes. Frattura Ed Integrita Strutturale, 9(34), 608–621. doi: 10.3221/IGF-ESIS.34.67

Belhocine, Ali; Abdullah, O. I. (2014). Finite Element Analysis of Automotive Disk Brake and Pad in Frictional Model Contact. IJMMME, 5, 32-62. doi: 10.4018/IJMMME.2015100103

Belhocine, A.; Bouchetara, M. (2012a). Thermomechanical Behaviour of Dry Contacts in Disc Brake Rotor with a Grey Cast Iron Composition. Transactions of the Indian Institute of Metals, 65(3), 231-238.

Belhocine, A.; Bouchetara, M. (2012b). Thermomechanical Behaviour of Dry Contacts in Disc Brake Rotor with a Grey Cast Iron Composition. Transactions of the Indian Institute of Metals, 65(3), 231-238.

Belhocine, A.; Bouchetara, M. (2013a). Temperature and thermal stresses of vehicles gray cast brake. Journal of applied research and technology, 11(5), 674–682.

Belhocine, A.; Bouchetara, M. (2013b). Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermomechanical coupling model. Ain Shams Engineering Journal, 4(3), 475-483.

Belhocine, Ali; Omar, Wan (2016). A numerical parametric study of mechanical behavior of dry contact slipping on the disc–pads interface. Alexandria engineering journal, 55(2), 1127-1141.

Berni, Fabio; Cicalese, Giuseppe; Fontanesi, Stefano (2017). A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines. Applied Thermal Engineering, 115, 1045-1062.

Blau, Peter; Jolly, Brian; Qu, Jun; Peter, William; Blue, Craig (2007). Tribological investigation of titanium-based materials for brakes. Wear, 263(7-12), 1202-1211.

Blau, Peter; Meyer III, Harry (2003). Characteristics of wear particles produced during friction tests of conventional and unconventional disc brake materials. Wear, 255(7-12), 1261-1269.

Chi, Zhongzhe; He, Yuping; Naterer, Greg (2009). Convective heat transfer optimization of automotive brake discs,” SAE Int. J. Passeng. Cars - Mech. Syst., 2(1), 961-969.

Dhaubhadel, M. N. (1996). CFD applications in the automotive industry (invited keynote presentation). Journal of fluids engineering, 118(4), 647-653.

Echavez-Díaz, Robert; Quintero-Orozco, Abner (2017). Estudio experimental del comportamiento dinámico del fluido del aire a través de un disco de freno automotriz con pilares de ventilación tipo NACA 66-209 (tesis de pregrado), Universidad Francisco de Paula Santander, Ocaña, Colombia.

García-León, Ricardo (2014). Evaluación del comportamiento de los frenos de disco de los vehículos a partir del análisis de la aceleración del proceso de corrosión (tesis de pregrado). Universidad Francisco de Paula Santander, Santander, Colombia.

García-León, Ricardo (2017). Thermal study in three vented brake discs, using the finite element analysis. DYNA, 84(200), 19-27.

García-León, Ricardo; Acosta-Pérez, María; Flórez-Solano, Eder (2015). Análisis del comportamiento de los frenos de disco de los vehículos a partir de la aceleración del proceso de corrosión. Tecnura, 19(45), 53–63.

García-León, Ricardo; Echavez-Díaz, Robert; Flórez-Solano, Eder (2018). Análisis termodinámico de un disco de freno automotriz con pilares de ventilación tipo NACA 66-209. INGECUC, 14(2), 9–18.

García-León, Ricardo; Flórez-Solano, Eder (2016). Estudio analítico de la transferencia de calor por convección que afectan los frenos de disco ventilados. Tecnura, 20(1), 15–30.

García-León, Ricardo; Flórez-Solano, Eder (2017). Dynamic analysis of three autoventilated disc brakes. Ingeniería e Investigación, 37(3), 102-114.

García-León, Ricardo; Flórez-Solano, Eder; Acevedo-Peñaloza, C. (2018). Análisis termodinámico en frenos de disco. Bogota, Colombia: ECOE Ediciones.

García-León, Ricardo; Perez-Rojas, Eduar (2017). Analysis of the amount of heat flow between cooling channels in three vented brake discs. Ingeniería y Universidad, 21(1), 55–70.

García-León, Ricardo; Rivera-López, Jesús; Quintero-Orozco, Abner; Gutiérrez-Paredes, Guadalupe (2019). Análisis del caudal en un disco de freno automotriz con álabes de ventilación tipo NACA 66-209, utilizando velocimetría por imágenes de partículas. Informador Técnico, 83(1), 20-32.

Gorjan, L.; Boretius, M.; Blugan, G.; Gili, F., Mangherini, D.; Lizarralde, X.; Ferrarise, M.; Graulea, T.; Igartua, A.; Mendoza, G.; Kuebler, J. (2016). Ceramic protection plates brazed to aluminum brake discs. Ceramics International, 42(14), 15739-15746.

He, Yan; Ma, Lianxiang; Huang, Suyi (2005). Convection heat and mass transfer from a disk. Heat and mass transfer, 41(8), 766-772.

Hernández-Mora, Johann; Trujillo-Rodríguez, César; Vallejo-Lozada, William (2014). Modelamiento de la irradiancia y la temperatura ambiente utilizando funciones de probabilidad. Tecnura, 18(39), 128-137.

Hirasawa, Shigeki; Kawanami, Tsuyoshi; Shirai, Katsuaki (2014). Numerical analysis of convection heat transfer on high-temperature rotating disk at bottom surface of air flow duct. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol. 8A.

Ilanko, Ashok; Vijayaraghavan, Srinivasan (2017). Wear mechanism of flax/basalt fiber-reinforced eco friendly brake friction materials. Tribology-Materials, Surfaces & Interfaces, 11(1), 47-53.

Jacobson, R. (2007). Applications of a new model for the abrasive wear resistance of multiphase materials. Compos. Coat. Mater., 174, 1459–1463.

Jamari, Jaenudin; Tauviqirrahman, M. (2017). “Thermal analysis of disc brakes using finite element method. AIP Conference Proceedings 1788, 30028.

Kim, Dae-Jin; Lee, Young-Min; Park, Jae-Sil; Seok, Chang-Sung (2008). Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface. Materials Science and Engineering: A, 483, 456-459.

Kim, J. K.; Yim, E. S.; Jeon, C. H.; Jung, C. S.; Han, B. H. (2012). Cold performance of various biodiesel fuel blends at low temperature. International journal of automotive technology, 13(2), 293-300.

Kim, M. R.; Ahn, B. J.; Lee, J. M.; Jung, Y. K. (2007). Numerical investigation of thermal behavior. In brake assembly during the ALPINE braking mode (No. 2007-01-1021). SAE Technical Paper.

Klimenda, Frantisek; Soukup, Josef; Kampo, Jan (2016). Heat distribution in disc brake. In AIP Conference Proceedings, vol. 1745.

Laguna-Camacho, J. R.; Juárez-Morales, G.; Calderón-Ramón, C.; Velázquez-Martínez, V.; Hernández-Romero, I.; Mendez-Mendez, J. V.; Vite-Torres, M. (2015). A study of the wear mechanisms of disk and shoe brake pads. Engineering Failure Analysis, 56, 348-359.

Langhof, Nico; Rabenstein, Michael; Rosenlöcher, Jens; Hackenschmidt, Reinhard; Krenkel, Walter; Rieg, Frank (2016). Full-ceramic brake systems for high performance friction applications. Journal of the European Ceramic Society, 36(15), 3823-3832.

Manohar-Reddy, S.; Mallikarjuna, J. M.; Ganesan, V. (2006). Flow and Heat Transfer Analysis Through a Brake Disc: A CFD Approach. In ASME 2006 International Mechanical Engineering Congress and Exposition (pp. 481-485). American Society of Mechanical Engineers.

Manohar-Reddy, S.; Mallikarjuna, J. M.; Ganesan, V. (2008). Flow and heat transfer analysis of a ventilated disc brake rotor using CFD. SAE Technical Paper. (No. 2008-01-0822). In SAE World Congress & Exhibition.

Mataix, Claudio (1986). Mecánica de Fluidos y Maquinas Hidraulicas. Segunda Edición, Madrid, España: Ediciones del Castillo S.A.

Matějka, V., Lu, Y., Matějková, P., Smetana, B., Kukutschová, J., Vaculík, M., Tomášek, V., Zlá, S., Fan, Y. (2011). Possible stibnite transformation at the friction surface of the semi-metallic friction composites designed for car brake linings. Applied surface science, 258(5), 1862-1868.

Meng, Dejian; Zhang, Lijun; Yu, Zhuoping (2016). A dynamic model for brake pedal feel analysis in passenger cars. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(7), 955-968.

Milenković, Predrag; Jovanović, Saša; Janković, Aleksandra; Milovanović, Milan; Vitošević, Nenad; Milan, Djordjević; Raičević, Mile (2010). The influence of brake pads thermal conductivity on passanger car brake system efficiency. Thermal Science, 14, S221-S230.

Palmer, E.; Mishra, R.; Fieldhouse, J. (2009). An optimization study of a multiple-row pin-vented brake disc to promote brake cooling using computational fluid dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(7), 865-875.

Pavlov, A. V.; Kudelnikova, S. P.; Vicharev, A. N. (2015). On the corrosion resistance of halfmetallic composite brake pads for railroad cars. Journal of Friction and Wear, 36(2), 123-126.

Pevec, M.; Potrc, I.; Bombek, G.; Vranesevic, D. (2012). Prediction of the cooling factors of a vehicle brake disc and its influence on the results of a thermal numerical simulation. International Journal of Automotive Technology, 13(5), 725-733.

Puhn, Fred (1985). Brake Handbook. USA: HP Books.

Rajagopal, Thundil; Ramachandran, Ramsai; James, Mathew; Gatlewar, Soniya (2014). Numerical investigation of fluid flow and heat transfer characteristics on the aerodynamics of ventilated disc brake rotor using CFD. Thermal Science, 18(2), 667–675.

Rashid, Asim (2014). Overview of disc brakes and related phenomena–a review. International journal of vehicle noise and vibration, 10(4), 257-301.

Romero-Millán, María; Cruz-Domínguez, María; Sierra-Vargas, Fabio Emiro (2016). Efecto de la temperatura en el potencial de aprovechamiento energético de los productos de la pirólisis del cuesco de palma. Tecnura, 20(48), 89-99.

Ruan, Jiageng; Walker, Paul; Watterson, Peter; Zhang, Nong (2016). The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle. Applied energy, 183, 1240-1258.

Sakamoto, H. (2004). Heat convection and design of brake discs. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218(3), 203-212.

Shaw, S. W. (1986). On the dynamic response of a system with dry friction. Journal of Sound and Vibration, 108(2), 305-325.

Shinde, N. B.; Borkar, B. R. (2015). Literature Review on Fem Analysis Of Disc Brake System. International Journal Of Engineering And Computer Science, 4(2), 10554–10558.

Siramdasu, Y.; Taheri, S. (2016). Discrete tyre model application for evaluation of vehicle limit handling performance. Vehicle System Dynamics, 54(11), 1554-1573.

Sobachkin, A.; Dumnov, G.; Sobachkin, A. (2014). Base numérica de CFD integrada en CAD (Informe Técnico, SolidWorks, 2014). Recovered from

Söderberg, Anders; Andersson, Sören (2009). Simulation of wear and contact pressure distribution at the pad-to-rotor interface in a disc brake using general purpose finite element analysis software. Wear, 267(12), 2243-2251.

Stewart, Monique; Singh, Som; Andersen, David; Wen, Rou; Booth, Graydon (2016). Wheel temperature reduction during freight car braking. 2016 Joint Rail Conference, Columbia, South Carolina, USA. American Society of Mechanical Engineers. pp. 1–11.

Talati, F.; Jalalifar, S. (2009). Analysis of heat conduction in a disk brake system. Heat and mass transfer, 45(8), 1047-1059.

Wahlström, J. (2011). A study of airborne wear particles from automotive disc brakes (doctoral dissertation). KTH Royal Institute of Technology.

Wei, Daogao; Ruan, Jingyu; Zhu, Weiwei; Kang, Zuheng (2016). Properties of stability, bifurcation, and chaos of the tangential motion disk brake. Journal of Sound and Vibration, 375, 353-365.

Wei, Wei; Hu, Yang; Wu, Qing; Zhao, Xubao; Zhang, Jun; Zhang, Yuan (2017). An air brake model for longitudinal train dynamics studies. Vehicle System Dynamics, 55(4), 517-533.

Wu, Shuai; Yi, Maozhong; Ge, Yicheng; Ran, Liping; Peng, Ke (2017). Effect of carbon fiber reinforcement on the tribological performance and behavior of aircraft carbon brake discs. Carbon, 117, 279-292.

Wu, Wei; Xiong, Zhao; Hu, Jibin; Yuan, Shihua (2015). Application of CFD to model oil–air flow in a grooved two-disc system. International Journal of Heat and Mass Transfer, 91, 293-301.

Wurm, Johannes; Fitl, Matthias; Gumpesberger, Michael; Väisänen, Esa; Hochenauer, Christoph (2016). Novel CFD approach for the thermal analysis of a Continuous Variable Transmission (CVT). Applied thermal engineering, 103, 159-169.

Cómo citar
García-León, R., Flórez-Solano, E., & Suárez-Quiñones, Álvaro. (2019). Brake discs: A technological review from its analysis and assessment. Informador Técnico, 83(2), 191-208.
Artículo de Revisión