Brake discs: A technological review from its analysis and assessment

Palabras clave: disc brake, Finite Elements Analysis (FEA), friction, temperature, cars

Resumen

Braking systems are undoubtedly the most important component for road safety, since it determines the total or partial stop of a vehicle and, therefore, guarantees the physical integrity of passengers. Normally, the front brake discs and the remaining percentage absorb 70% of the kinetic energy produced within a vehicle by the rear brake discs, which tend to have the formof a drum brake. These systems benefit from friction to stop a moving vehicle, under the umbrella of hydraulic pressure that pushes the brake pads against the iron-cast disk. In this document, concepts of famous authors around the world on analysis and evaluation of brake discs are provided, which are carried out using a descriptive methodology and an estimation of the characteristics of the brake disc. The review is carried out in computer assisted design through several existing CAD software in the industry, as the main methodology applied to the development of certain research projects, where different geometric characteristics of the brake discs are considered, as well as problems related to wear and corrosion. This research project has shown that it is vital to incorporate existing computer assisted design software to predict performance, improve components and optimize the functionality of the brake system. In this way, road traffic safety and systems efficiency are achieved, which are a matter of great importance for the industry. It is vital to analyze brake systems through Finite Element Analysis (FEA), with the intention of achieving a broader vision of its performance, since the information collected reveals that the geometric characteristics of the brake and cooling ducts influence the heat dissipation. It depends on the form, the type of material and the application, the heat generated between the pad and the brake. Therefore, the heat is dissipated rapidly according to the analysis performed mathematically by the researchers, which are compared with the made in computer assisted design software.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Ricardo García-León, Universidad Francisco de Paula Santander. Instituto Politecnico Nacional de Mexico
Estudiante de doctorado en ciencias de la ingeniería mecánica Magíster en ingeniería industrial Ingeniero mecánico

Referencias

Abhang, Swapnil; Bhaskar, D. P. (2014). Design and Analysis of Disc Brake.International Journal of Engineering Trends and Technology, 8(4), 165–167. https://doi.org/10.14445/22315381/IJETT-V8P231

Acosta-Alvarez, Iovanny; Pareja-Dangond, Diego (2019). Construcción de un banco de pruebas para el analisis del comportamiento al desgaste de los sistemas de frenos de disco automotrices (tesis de pregrado). Universidad Francisco de Paula Santander Ocaña, Colombia.

Aguayo-Ortiz, A.; Cardoso-Sakamoto, H.; Echeverría-Arjonilla, C.; Porta-Zepeda, D.; Stern-Forgach, C.; Monsivais-Galindo G. (2016). Calibration of a Background Oriented Schlieren (BOS). In Klapp, Jaime; Di G, Leonardo; Medina, Abraham; López, Abel; Ruiz-Chavarría, Gerardo (Eds.), Recent Advances in Fluid Dynamics with Environmental Applications (pp.103-114). Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-27965-7_8

Andreaus, U.; Casini, P. (2001). Dynamics of friction oscillators excited by a moving base and/or driving force. Journal of Sound and Vibration, 245(4), 685-699. https://doi.org/10.1006/jsvi.2000.3555

Bagnoli, F.; Dolce, F.; Bernabei, M. (2009). Thermal fatigue cracks of fire fighting vehicles gray iron brake discs. Engineering Failure Analysis, 16(1), 152-163. https://doi.org/10.1016/j.engfailanal.2008.01.009

Baron-Saiz, C.; Ingrassia, T.; Nigrelli, V.; Ricotta, V. (2015). Thermal stress analysis of different full and ventilated disc brakes. Frattura Ed Integrita Strutturale, 9(34), 608–621. doi: 10.3221/IGF-ESIS.34.67

Belhocine, Ali; Abdullah, O. I. (2014). Finite Element Analysis of Automotive Disk Brake and Pad in Frictional Model Contact. IJMMME, 5, 32-62. doi: 10.4018/IJMMME.2015100103

Belhocine, A.; Bouchetara, M. (2012a). Thermomechanical Behaviour of Dry Contacts in Disc Brake Rotor with a Grey Cast Iron Composition. Transactions of the Indian Institute of Metals, 65(3), 231-238. https://doi.org/10.1007/s12666-012-0129-6

Belhocine, A.; Bouchetara, M. (2012b). Thermomechanical Behaviour of Dry Contacts in Disc Brake Rotor with a Grey Cast Iron Composition. Transactions of the Indian Institute of Metals, 65(3), 231-238. https://doi.org/10.1007/s12666-012-0129-6

Belhocine, A.; Bouchetara, M. (2013a). Temperature and thermal stresses of vehicles gray cast brake. Journal of applied research and technology, 11(5), 674–682. https://doi.org/10.1016/S1665-6423(13)71575-X

Belhocine, A.; Bouchetara, M. (2013b). Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermomechanical coupling model. Ain Shams Engineering Journal, 4(3), 475-483. https://doi.org/10.1016/j.asej.2012.08.005

Belhocine, Ali; Omar, Wan (2016). A numerical parametric study of mechanical behavior of dry contact slipping on the disc–pads interface. Alexandria engineering journal, 55(2), 1127-1141. https://doi.org/10.1016/j.aej.2016.03.025

Berni, Fabio; Cicalese, Giuseppe; Fontanesi, Stefano (2017). A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines. Applied Thermal Engineering, 115, 1045-1062. https://doi.org/10.1016/j.applthermaleng.2017.01.055

Blau, Peter; Jolly, Brian; Qu, Jun; Peter, William; Blue, Craig (2007). Tribological investigation of titanium-based materials for brakes. Wear, 263(7-12), 1202-1211. https://doi.org/10.1016/j.wear.2006.12.015

Blau, Peter; Meyer III, Harry (2003). Characteristics of wear particles produced during friction tests of conventional and unconventional disc brake materials. Wear, 255(7-12), 1261-1269. https://doi.org/10.1016/S0043-1648(03)00111-X

Chi, Zhongzhe; He, Yuping; Naterer, Greg (2009). Convective heat transfer optimization of automotive brake discs,” SAE Int. J. Passeng. Cars - Mech. Syst., 2(1), 961-969. https://doi.org/10.4271/2009-01-0859

Dhaubhadel, M. N. (1996). CFD applications in the automotive industry (invited keynote presentation). Journal of fluids engineering, 118(4), 647-653. https://doi.org/10.1115/1.2835492

Echavez-Díaz, Robert; Quintero-Orozco, Abner (2017). Estudio experimental del comportamiento dinámico del fluido del aire a través de un disco de freno automotriz con pilares de ventilación tipo NACA 66-209 (tesis de pregrado), Universidad Francisco de Paula Santander, Ocaña, Colombia.

García-León, Ricardo (2014). Evaluación del comportamiento de los frenos de disco de los vehículos a partir del análisis de la aceleración del proceso de corrosión (tesis de pregrado). Universidad Francisco de Paula Santander, Santander, Colombia.

García-León, Ricardo (2017). Thermal study in three vented brake discs, using the finite element analysis. DYNA, 84(200), 19-27. https://doi.org/10.15446/dyna.v84n200.55663

García-León, Ricardo; Acosta-Pérez, María; Flórez-Solano, Eder (2015). Análisis del comportamiento de los frenos de disco de los vehículos a partir de la aceleración del proceso de corrosión. Tecnura, 19(45), 53–63. https://doi.org/10.14483/udistrital.jour.tecnura.2015.3.a04

García-León, Ricardo; Echavez-Díaz, Robert; Flórez-Solano, Eder (2018). Análisis termodinámico de un disco de freno automotriz con pilares de ventilación tipo NACA 66-209. INGECUC, 14(2), 9–18. https://doi.org/10.17981/ingecuc.14.2.2018.01

García-León, Ricardo; Flórez-Solano, Eder (2016). Estudio analítico de la transferencia de calor por convección que afectan los frenos de disco ventilados. Tecnura, 20(1), 15–30.

García-León, Ricardo; Flórez-Solano, Eder (2017). Dynamic analysis of three autoventilated disc brakes. Ingeniería e Investigación, 37(3), 102-114. https://doi.org/10.15446/ing.investig.v37n3.63381

García-León, Ricardo; Flórez-Solano, Eder; Acevedo-Peñaloza, C. (2018). Análisis termodinámico en frenos de disco. Bogota, Colombia: ECOE Ediciones.

García-León, Ricardo; Perez-Rojas, Eduar (2017). Analysis of the amount of heat flow between cooling channels in three vented brake discs. Ingeniería y Universidad, 21(1), 55–70. https://doi.org/10.11144/Javeriana.iyu21-1.aahf

García-León, Ricardo; Rivera-López, Jesús; Quintero-Orozco, Abner; Gutiérrez-Paredes, Guadalupe (2019). Análisis del caudal en un disco de freno automotriz con álabes de ventilación tipo NACA 66-209, utilizando velocimetría por imágenes de partículas. Informador Técnico, 83(1), 20-32. https://doi.org/10.23850/22565035.1785

Gorjan, L.; Boretius, M.; Blugan, G.; Gili, F., Mangherini, D.; Lizarralde, X.; Ferrarise, M.; Graulea, T.; Igartua, A.; Mendoza, G.; Kuebler, J. (2016). Ceramic protection plates brazed to aluminum brake discs. Ceramics International, 42(14), 15739-15746. https://doi.org/10.1016/j.ceramint.2016.07.035

He, Yan; Ma, Lianxiang; Huang, Suyi (2005). Convection heat and mass transfer from a disk. Heat and mass transfer, 41(8), 766-772. https://doi.org/10.1007/s00231-005-0628-7

Hernández-Mora, Johann; Trujillo-Rodríguez, César; Vallejo-Lozada, William (2014). Modelamiento de la irradiancia y la temperatura ambiente utilizando funciones de probabilidad. Tecnura, 18(39), 128-137. https://doi.org/10.14483/udistrital.jour.tecnura.2014.1.a09

Hirasawa, Shigeki; Kawanami, Tsuyoshi; Shirai, Katsuaki (2014). Numerical analysis of convection heat transfer on high-temperature rotating disk at bottom surface of air flow duct. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol. 8A. https://doi.org/10.1115/IMECE2014-36142

Ilanko, Ashok; Vijayaraghavan, Srinivasan (2017). Wear mechanism of flax/basalt fiber-reinforced eco friendly brake friction materials. Tribology-Materials, Surfaces & Interfaces, 11(1), 47-53. https://doi.org/10.1080/17515831.2017.1299323

Jacobson, R. (2007). Applications of a new model for the abrasive wear resistance of multiphase materials. Compos. Coat. Mater., 174, 1459–1463.

Jamari, Jaenudin; Tauviqirrahman, M. (2017). “Thermal analysis of disc brakes using finite element method. AIP Conference Proceedings 1788, 30028. https://doi.org/10.1063/1.4968281

Kim, Dae-Jin; Lee, Young-Min; Park, Jae-Sil; Seok, Chang-Sung (2008). Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface. Materials Science and Engineering: A, 483, 456-459. https://doi.org/10.1016/j.msea.2007.01.170

Kim, J. K.; Yim, E. S.; Jeon, C. H.; Jung, C. S.; Han, B. H. (2012). Cold performance of various biodiesel fuel blends at low temperature. International journal of automotive technology, 13(2), 293-300. https://doi.org/10.1007/s12239-012-0027-2

Kim, M. R.; Ahn, B. J.; Lee, J. M.; Jung, Y. K. (2007). Numerical investigation of thermal behavior. In brake assembly during the ALPINE braking mode (No. 2007-01-1021). SAE Technical Paper. https://doi.org/10.4271/2007-01-1021

Klimenda, Frantisek; Soukup, Josef; Kampo, Jan (2016). Heat distribution in disc brake. In AIP Conference Proceedings, vol. 1745. https://doi.org/10.1063/1.4953715

Laguna-Camacho, J. R.; Juárez-Morales, G.; Calderón-Ramón, C.; Velázquez-Martínez, V.; Hernández-Romero, I.; Mendez-Mendez, J. V.; Vite-Torres, M. (2015). A study of the wear mechanisms of disk and shoe brake pads. Engineering Failure Analysis, 56, 348-359. https://doi.org/10.1016/j.engfailanal.2015.01.004

Langhof, Nico; Rabenstein, Michael; Rosenlöcher, Jens; Hackenschmidt, Reinhard; Krenkel, Walter; Rieg, Frank (2016). Full-ceramic brake systems for high performance friction applications. Journal of the European Ceramic Society, 36(15), 3823-3832. https://doi.org/10.1016/j.jeurceramsoc.2016.04.040

Manohar-Reddy, S.; Mallikarjuna, J. M.; Ganesan, V. (2006). Flow and Heat Transfer Analysis Through a Brake Disc: A CFD Approach. In ASME 2006 International Mechanical Engineering Congress and Exposition (pp. 481-485). American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2006-14317

Manohar-Reddy, S.; Mallikarjuna, J. M.; Ganesan, V. (2008). Flow and heat transfer analysis of a ventilated disc brake rotor using CFD. SAE Technical Paper. (No. 2008-01-0822). In SAE World Congress & Exhibition. https://doi.org/10.4271/2008-01-0822

Mataix, Claudio (1986). Mecánica de Fluidos y Maquinas Hidraulicas. Segunda Edición, Madrid, España: Ediciones del Castillo S.A.

Matějka, V., Lu, Y., Matějková, P., Smetana, B., Kukutschová, J., Vaculík, M., Tomášek, V., Zlá, S., Fan, Y. (2011). Possible stibnite transformation at the friction surface of the semi-metallic friction composites designed for car brake linings. Applied surface science, 258(5), 1862-1868. https://doi.org/10.1016/j.apsusc.2011.10.063

Meng, Dejian; Zhang, Lijun; Yu, Zhuoping (2016). A dynamic model for brake pedal feel analysis in passenger cars. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(7), 955-968. https://doi.org/10.1177/0954407015598030

Milenković, Predrag; Jovanović, Saša; Janković, Aleksandra; Milovanović, Milan; Vitošević, Nenad; Milan, Djordjević; Raičević, Mile (2010). The influence of brake pads thermal conductivity on passanger car brake system efficiency. Thermal Science, 14, S221-S230. https://doi.org/10.2298/TSCI100505016M

Palmer, E.; Mishra, R.; Fieldhouse, J. (2009). An optimization study of a multiple-row pin-vented brake disc to promote brake cooling using computational fluid dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(7), 865-875. https://doi.org/10.1243/09544070JAUTO1053

Pavlov, A. V.; Kudelnikova, S. P.; Vicharev, A. N. (2015). On the corrosion resistance of halfmetallic composite brake pads for railroad cars. Journal of Friction and Wear, 36(2), 123-126. https://doi.org/10.3103/S1068366615020130

Pevec, M.; Potrc, I.; Bombek, G.; Vranesevic, D. (2012). Prediction of the cooling factors of a vehicle brake disc and its influence on the results of a thermal numerical simulation. International Journal of Automotive Technology, 13(5), 725-733. https://doi.org/10.1007/s12239-012-0071-y

Puhn, Fred (1985). Brake Handbook. USA: HP Books.

Rajagopal, Thundil; Ramachandran, Ramsai; James, Mathew; Gatlewar, Soniya (2014). Numerical investigation of fluid flow and heat transfer characteristics on the aerodynamics of ventilated disc brake rotor using CFD. Thermal Science, 18(2), 667–675. https://doi.org/10.2298/TSCI111219204R

Rashid, Asim (2014). Overview of disc brakes and related phenomena–a review. International journal of vehicle noise and vibration, 10(4), 257-301. https://doi.org/10.1504/IJVNV.2014.065634

Romero-Millán, María; Cruz-Domínguez, María; Sierra-Vargas, Fabio Emiro (2016). Efecto de la temperatura en el potencial de aprovechamiento energético de los productos de la pirólisis del cuesco de palma. Tecnura, 20(48), 89-99. http://dx.doi.org/10.14483/udistrital.jour.tecnura.2016.2.a06.

Ruan, Jiageng; Walker, Paul; Watterson, Peter; Zhang, Nong (2016). The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle. Applied energy, 183, 1240-1258. https://doi.org/10.1016/j.apenergy.2016.09.057

Sakamoto, H. (2004). Heat convection and design of brake discs. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218(3), 203-212. https://doi.org/10.1243/0954409042389436

Shaw, S. W. (1986). On the dynamic response of a system with dry friction. Journal of Sound and Vibration, 108(2), 305-325. https://doi.org/10.1016/S0022-460X(86)80058-X

Shinde, N. B.; Borkar, B. R. (2015). Literature Review on Fem Analysis Of Disc Brake System. International Journal Of Engineering And Computer Science, 4(2), 10554–10558. http://www.ijecs.in/index.php/ijecs/article/view/3422

Siramdasu, Y.; Taheri, S. (2016). Discrete tyre model application for evaluation of vehicle limit handling performance. Vehicle System Dynamics, 54(11), 1554-1573. https://doi.org/10.1080/00423114.2016.1220594

Sobachkin, A.; Dumnov, G.; Sobachkin, A. (2014). Base numérica de CFD integrada en CAD (Informe Técnico, SolidWorks, 2014). Recovered from http://www.solidworks.es/sw/docs/Flow_Basis_of_CAD_Embedded_CFD_Whitepaper_ESP.pdf

Söderberg, Anders; Andersson, Sören (2009). Simulation of wear and contact pressure distribution at the pad-to-rotor interface in a disc brake using general purpose finite element analysis software. Wear, 267(12), 2243-2251. https://doi.org/10.1016/j.wear.2009.09.004

Stewart, Monique; Singh, Som; Andersen, David; Wen, Rou; Booth, Graydon (2016). Wheel temperature reduction during freight car braking. 2016 Joint Rail Conference, Columbia, South Carolina, USA. American Society of Mechanical Engineers. pp. 1–11. https://doi.org/10.1115/JRC2016-5819

Talati, F.; Jalalifar, S. (2009). Analysis of heat conduction in a disk brake system. Heat and mass transfer, 45(8), 1047-1059. https://doi.org/10.1007/s00231-009-0476-y

Wahlström, J. (2011). A study of airborne wear particles from automotive disc brakes (doctoral dissertation). KTH Royal Institute of Technology.

Wei, Daogao; Ruan, Jingyu; Zhu, Weiwei; Kang, Zuheng (2016). Properties of stability, bifurcation, and chaos of the tangential motion disk brake. Journal of Sound and Vibration, 375, 353-365. https://doi.org/10.1016/j.jsv.2016.04.022

Wei, Wei; Hu, Yang; Wu, Qing; Zhao, Xubao; Zhang, Jun; Zhang, Yuan (2017). An air brake model for longitudinal train dynamics studies. Vehicle System Dynamics, 55(4), 517-533. https://doi.org/10.1080/00423114.2016.1254261

Wu, Shuai; Yi, Maozhong; Ge, Yicheng; Ran, Liping; Peng, Ke (2017). Effect of carbon fiber reinforcement on the tribological performance and behavior of aircraft carbon brake discs. Carbon, 117, 279-292. https://doi.org/10.1016/j.carbon.2017.03.003

Wu, Wei; Xiong, Zhao; Hu, Jibin; Yuan, Shihua (2015). Application of CFD to model oil–air flow in a grooved two-disc system. International Journal of Heat and Mass Transfer, 91, 293-301. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.092

Wurm, Johannes; Fitl, Matthias; Gumpesberger, Michael; Väisänen, Esa; Hochenauer, Christoph (2016). Novel CFD approach for the thermal analysis of a Continuous Variable Transmission (CVT). Applied thermal engineering, 103, 159-169. https://doi.org/10.1016/j.applthermaleng.2016.04.092

Publicado
2019-08-26
Cómo citar
García-León, R., Flórez-Solano, E., & Suárez-Quiñones, Álvaro. (2019). Brake discs: A technological review from its analysis and assessment. Informador Técnico, 83(2), 191-208. https://doi.org/10.23850/22565035.1766
Sección
Artículo de Revisión