Aplicaciones biotecnológicas en minería aurífera: Estado del arte sobre la oxidación bacteriana de arsenopirita (FeAsS)
PDF
XML

Palabras clave

Biominería
Biooxidación
Biolixiviación
Arsénico
Acidithio-bacillus ferrooxidans

Cómo citar

Ospina Correa, J. D., Osorno Bedoya, L., Giraldo Builes, J., Mejía Restrepo, E., & Márquez Godoy, M. A. (2011). Aplicaciones biotecnológicas en minería aurífera: Estado del arte sobre la oxidación bacteriana de arsenopirita (FeAsS). Informador Técnico, 75. https://doi.org/10.23850/22565035.20

Resumen

En el mundo, grandes cantidades de sulfuros provenientes de la explotación minera con características refractarias y/o con iones, en su estructura cristalina, nocivos al medio ambiente y a la salud humana, han sido acumulados en el tiempo. Dichos sulfuros presentan contenidos de oro relevantes en la mayoría de los casos, el tratamiento de estos materiales no es factible por métodos convencionales, lo cual incrementa el costo de la recuperación de los valores metálicos presentes. Es así como, en las últimas décadas, la bio-hidrometalurgia, se ha convertido en una tecnología comercialmenteviable para la extracción de metales preciosos. Además, es bien conocida por su utilización en la bio-remediación de drenajes ácidos, remoción de metales pesados presentes en áreas mineras, suelos y sedimentos contaminados, residuos industriales como cenizas de incineración; degradación de cianuro, adecuación de concentrados para separación por flotación espumante, biodesulfurización de carbones, entre otras. En este trabajo se presenta el principio fundamental de la oxidación bacteriana de la arsenopirita, así como un esbozo acerca de los mecanismos y diferentes susceptibilidades que muestra frente a la oxidación biológica.
https://doi.org/10.23850/22565035.20
PDF
XML

Citas

Acevedo, F., Gentina, J. Bioleaching of minerals-a valide alternative for developing countries. Journal of Biotechnology. 31, (1993);p.115-123.

https://doi.org/10.1016/0168-1656(93)90141-9

Ahonen, L., Tuovinen, O. Alterations in surfaces y textures of minerals during the bacterial leaching of a complex sulfide ore. Geomicrobiology Journal, Vol. 10 (1993); p.207-217.

https://doi.org/10.1080/01490459209377921

Ahonen, L., Tuovinen, O. Solid-phase alteration y iron transformation in column bioleaching of a complex sulfide ore. In: Environmental Geochemistry of sulfide oxidation. ACS Symposium Series 550. American Chemical Society, Washington. 1994.

Akcil, A., Ciftci, H. y Deveci, H. Role y contribution of pure y mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Minerals Engineering. Vol 20. (2007); 310–318.

https://doi.org/10.1016/j.mineng.2006.10.016

Bosecker, K. Microbial leaching in environmental clean-up. Hydrometallurgy. 59, (2001); p.245– 248.

https://doi.org/10.1016/S0304-386X(00)00163-8

Brewis, T. Metal extraction by bacterial oxidation. Mining Magazine, vol. october,; (1995) p.197-207.

Brierley, J., Brierley, C.L. Present y future commercial applications of biohydrometallurgy. Hydrometallurgy 59, (2001). p.233–239.

https://doi.org/10.1016/S0304-386X(00)00162-6

Brierley, J.A., Luinstra, L. Biooxidation-heap concept for pretreatment of refractory gold ore. En: Biohydrometallurgical Technologies, A.E. Torma, J.E. Wey & V.L. Lakshmanan Eds., The Minerals, Metals & Materials Society, (1993); p.437-448.

BRUYNESTEYN, A. Mineral Biotechnology-Minireview. Journal of Biotechnology. 11, (1989); .p-1-10.

Buckley, A.N., Walker, G.W. The surface composition of arsenopyrite exposed to oxidizing environments. Appl. Surf. Sci. 35, (1988); p.227–240.

https://doi.org/10.1016/0169-4332(88)90052-9

Butcher, B.G., Deane, S.M., Rawlings, D.E., The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have unusual arrangement y confer increased arsenic y antimony resistance to Escherichia coli. Appl. Environ. Microbiol. 66, (2000). p.1826–1833.

https://doi.org/10.1128/AEM.66.5.1826-1833.2000

Cardona I.C., Márques, M.A.Biodesulfurization of two Colombian coals with native microorganisms. Fuel Processing Technology. Vol 90. (2009); p.1099–1106.

https://doi.org/10.1016/j.fuproc.2009.04.022

Carlson, L., Lindstrom, E.B., Hallberg, K.B., Tuovinen, O.H. Solid-phase products of bacterial oxidation of arsenopyrite. Appl. Environ. Microbiol. 58, 1992.p.1046–1049.

Collinet, M.N., Morin, D. Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite, arsenate, ferrous y ferriciron. Antonie van Leewenhoek. Vol 57. (1990). p.237-244.

https://doi.org/10.1007/BF00400155

Colmer, A.R., Hinkle, M.E. The Role of Microorganisms in Acid Mine Drainage: Preliminary Report. Agricultural y Engineering Experiment Stations, West Virginia University. 1947.

Çopur, M. Solubility of ZnS Concentrate Containing pyrite y chalcopyrite in HNO3 solutions. Chem. Biochem. Eng. Q. 15, (2001) p.181–184.

CORKHILL, C.L., VAUGHAN, D.J.Arsenopyrite oxidation – A review. Applied Geochemistry. doi:10.1016/j.apgeochem.2009.09.008.

https://doi.org/10.1016/j.apgeochem.2009.09.008

Corkhill, C.L., Wincott, P.L., Lloyd, J.R., Vaughan, D.J. The oxidative dissolution of arsenopyrite (FeAsS) y enargite (Cu3AsS4) by Leptospirillum ferrooxidans. Geochim. Cosmochim. Acta 72, (2008); 5616–5633.

https://doi.org/10.1016/j.gca.2008.09.008

Costa, M.C., Botelho Do Rogo, A.M., Abrantes, L.M. Characterization of a natural y an electro-oxidised arsenopyrite: a study on electrochemical y Xray photoelectron spectroscopy. Int. J. Miner. Process. 65, (2002). p.83–108.

https://doi.org/10.1016/S0301-7516(01)00059-X

Craw, D., Falconer, D., Youngson, J.H., Environmental arsenopyrite stability y dissolution: theory, experiment y field observations. Chemical Geology. 199, (2003); p. 71–82.

https://doi.org/10.1016/S0009-2541(03)00117-7

Cruz, R., Lazaro, I., Gonzalez, I., Monroy, M., Acid dissolution influences bacterial attachment y oxidation of arsenopyrite. Miner. Eng. 18, (2005)p.1024–1031.

https://doi.org/10.1016/j.mineng.2005.01.015

Crundwell, F. 2003. How do bacteria interact with minerals?. Hydrometallurgy. 71:75–81.

https://doi.org/10.1016/S0304-386X(03)00175-0

Da Silva, G. Kinetics y mechanism of the bacterial y ferric sulphate oxidation of galena. Hydrometallurgy. 2004.

https://doi.org/10.1016/j.hydromet.2004.07.001

Demopoulos, G.P., Papangelakis, V.G. Recent advances in refractory gold processing. CIM Bulletin, Nov., (1989)p.85-91.

DEVASIA, P., NATARAJAN, K.A. Bacterial Leaching: Biotechnology in the Mining Industry. 2004.

Dopson, M., Lindstrom, E.B., Hallberg, K.B. Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus. Extremeophiles 5, (2001). P.247–255.

https://doi.org/10.1007/s007920100196

Duque, B., Noguera, H. Estudio de prefactibilidad técnica y financiera del proceso de biolixiviación para el mineral de la mina el silencio (Segovia, Antioquia). 2001. Tesis Ingeniería Química. Universidad Nacional de Colombia- Sede Medellín.

Edwards, K.J., Bond, P.L., Banfield, J.F. Characteristics of attachment y growth of Thiobacillus caldus on sulphide minerals: a chemotactic response to sulphur minerals? Environ. Microbiol. 2, (2000) .p.324–332.

https://doi.org/10.1046/j.1462-2920.2000.00111.x

Edwards, K.J., Hu, B., Hamers, R.J., Banfield, J.F. A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiol. Ecol. 34, (2001) .p.197–206.

https://doi.org/10.1111/j.1574-6941.2001.tb00770.x

Ehrlich, H.L., Newman, D.K., (Eds), Geomicrobiology, Fifth Edition. Taylor & Francis Group, LLC. 2009.

Eligwe, C. Microbial desulphurization of coal. Fuel. 67, (1988); p.451-458.

https://doi.org/10.1016/0016-2361(88)90338-9

Fernandez, P.G., Linge, H.G., Wadsley, M.W. Oxidation of arsenopyrite (FeAsS) in acid part I: reactivity of arsenopyrite. J. Appl. Electrochem. 26, (1996 a). p.575–583.

https://doi.org/10.1007/BF00253455

Fernandez, P.G., Linge, H.G., Willing, M.J. Oxidation of arsenopyrite (FeAsS) in acid part II: Stoichiometry y reaction scheme. J. Appl. Electrochem. 26, (1996 b) .p.585–591.

https://doi.org/10.1007/BF00253456

Foucher, S., Battaglia-Brunet, F., D ́HUGUES, P., CLARENS.M., GODON, J. J. MORIN D. Evolution of the bacteria population during the batch bioleaching of a cobaltiferous pyrite in a suspended-solids bubble colum y comparison with a mechanically agitated reactor. Hydrometallurgy. Vol 71. (2003). p.5–12.

https://doi.org/10.1016/S0304-386X(03)00142-7

Francisco, jr. W. Estudo da oxidação de covelita (CuS) e molibdenita (MoS2) sintéticas por Acidithiobacillus ferrooxidans. Tesis M.Sc. Universidade Estadual do Sao Paulo. 2006.

Garcia, J.L. Cours the biolixiviation. Université de Provence, Ecole Supérieure d'Ingénieurs de Luminy, Centre d'Enseignement Supérieure en Biotechnologie. Ecole Supérieure de Génie Biologique et Microbiologie Appliquée, Module de Microbiologie Appliquée, Laboratoire de Microbiologie, Orstom, (1995). 19 p.

García, jr., O., Urenha, L. Lixiviação bacteriana de minérios. En: Biotecnologia Industrial. Vol 3. Procesos fermentativos e enzimáticos. Ed. Urgel de Almeida. Eugenio Aguarone, Walter Borzani, Willibaldo Schmidell. 8 Ed. Brazil. 2001.

Gilbert, S.R, Bounds, C.O., Ice, R.R. Comparative economics of bacterial oxidation y roasting as a pre-treatment step for gold recovery from na auriferous pyrite concentrate. CIM Bulletin, vol. 81, (1988); p.89-94.

Goldhaber, M.B., Experimental study of metastable sulfur oxyanion formation during pyrite oxidation at pH 6-9 y 30°C. Am. J. Sci. 283, (1983); p.193–217.

https://doi.org/10.2475/ajs.283.3.193

GROOT, P., DEANE, S.M., RAWLINGS, D.E., A transposon-located arsenic resistance mechanism from a strain of Acidithiobacillus caldus isolated from commercial, arsenopyrite biooxidation tanks. Biohydrometall. Fundam. Technol. Sustain. Dev. 71, (2003). p.115–123.

https://doi.org/10.1016/s0304-386x(03)00147-6

Hacquard, E., Bessiere, J., Alnot, M., Ehrdhardt, J.J., Surface spectroscopic study of the adsorption of Ni(II) on pyrite y arsenopyrite at pH 10. Surf. Interface Anal. 27, (1999)p. 849–860.

https://doi.org/10.1002/(SICI)1096-9918(199909)27:9<849::AID-SIA649>3.0.CO;2-W

Hagni, A.M., Hagni, R.D. & Taylor, P.R. Mineralogical y textural characterization of lime roasted pyrite y arsenopyrite for gold leaching. In: Process Mineralogy XII – Applications to Environment, Preciuos Metals, Mineral Beneficiation, Pyrometallurgy, Coal y Refractories (W.Petruk, A.K.Rule, eds.), (1994);p.141-149.

Hallberg, K.B., Sehlin, H.M., Lindstrom, E.B. Toxicity of arsenic during high temperature bioleaching of gold-bearing arsenical pyrite. Appl. Microbiol. Biotechnol. 45, (1996) .p.212–216.

https://doi.org/10.1007/s002530050672

Harneit, K., Goeksel, A., Kock, D., Klock, J.H., Gehrke, T., Sand, W. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans y Leptospirillum ferrooxidans. Hydrometallurgy. 83, (2006). p.245–254.

https://doi.org/10.1016/j.hydromet.2006.03.044

Johnson D. B. Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy 59: (2001) p.147-157.

https://doi.org/10.1016/S0304-386X(00)00183-3

Lawrence, R.W., Bruynesteyn, A. Biological pre-oxidation to enhance gold y silver recovery from refractory pyritic ores y concentrates. CIM Bulletin, vol. 76, (1983). .p.107-110.

Luther Iii, G.W. Pyrite oxidation y reduction: Molecular orbital theory considerations. Geochimica et Cosmochimica Acta. 51, (1987);p.3193–3199.

https://doi.org/10.1016/0016-7037(87)90127-X

Márquez, M. Caracterização mineralógica do minério, concentrado e rejeito da flotação da mina São Bento (MG). Brasilia, (1995); 237p. Tesis de Maestría. Universidade de Brasília. Instituto de Gociências .

MÁRQUEZ, M., Mineralogia dos processos de oxidação sobre pressão e bacteriana do minerio de ouro da mina São Bento, MG. (1999). Tese de doutorado. Universidad de Brasilia.

MÁRQUEZ, M., GASPAR, J., BESSLER, K., MAGELA,G. Process mineralogy of bacterial oxidized gold ore in São Bento Mine (Brasil).Hydrometallurgy 83: (2006); p.114–123. MARSDEN, J., HOUSE, I. The chemistry of gold extraction. Ed. Ellis Horwood Limited, England. 1992.

Mcguire, M.M., Edwards, K.J., Banfield, J.F., Hamers, R.J., Kinetics, surface chemistry, y structural evolution of microbially mediated sulfide mineral dissolution. Geochim. Cosmochim. Acta 65, (2001b) p.1243–1258.

https://doi.org/10.1016/S0016-7037(00)00601-3

McIntosh, J., Silver, M., Groat, L. Bacteria y the breakdown of sulfide minerals. In: Biological-mineralogical interactions. Ed. McIntosc, J.M., Groat, L., Mineralogical association of Canada. Short course series. Vol 25. Otawa. 1997.

McKibben, M.A., Tallant, B.A., Del Angel, J.K., Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions. Appl. Geochem. 23, (2008);p.121–135.

https://doi.org/10.1016/j.apgeochem.2007.10.009

McNulty, T.P., Thompson, D.L. Economics of bioleaching. In: Microbial Mineral Recovery, Ehrlich, H.L. & Brierley, C.L. Ed. McGraw Hill, New York, (1990); p.171-182.

Mejía, E. Mineralogía del proceso de oxidación bacteriana de la calcopirita, esfalerita y galena. 2010.Tesis magíster en Ingeniería – Área Materiales y Procesos, Universidad Nacional de Colombia (Medellín).

Mignone, C.F., Donati, E.R. ATP requeriments for growth y maintenance of iron-oxidizing bacteria. Biochemical Engineering Journal. Vol 18. 2004. p.211– 16.

https://doi.org/10.1016/j.bej.2003.08.010

Mikhlin, Y., Tomashevich, Y. Pristine y reacted surfaces of pyrrhotite y arsenopyrite as studied by X-ray absorption near-edge structure spectroscopy. Phys. Chem. Miner. 32, (2005) p.19–27.

https://doi.org/10.1007/s00269-004-0436-5

Mikhlin, Y.L., Romanchenko, A.S., Asanov, I.P, Oxidation of arsenopyrite y deposition of gold on the oxidised surfaces: A scanning probe microscopy, tunnelling spectroscopy y XPS study. Geochim. Cosmochim. Acta 70, 2006p 4874–4888.

https://doi.org/10.1016/j.gca.2006.07.021

Moses, C.O., Nordstrom, D.K., Herman, J.S., Mills, A.L. Aqueous pyrite oxidation by dissolved oxygen y ferric iron. Geochim. Cosmochim. Acta 51, (1987);p.1561–1571.

https://doi.org/10.1016/0016-7037(87)90337-1

Muñoz, A., Oxidación de concentrados de sulfuros metálicos provenientes de la mina La Maruja de Marmato, Caldas, mediante una cepa nativa de Acidithiobacillus ferrooxidans. 2002.Tesis de Maestría en Biotecnología. Universidad Nacional de Colombia-Sede Medellín.

Neale, J.W, Pinches, A., Muller, H.H., Hannweg, N.H., Dempsey, P. Long-term bacterial oxidation pilot plant operation at Mintek y Vaal Reefs. In: Presented at the South African Institute of Minning y Metallurgy Colloquium on Bacterial Oxidation, Johannesburg, 1991. 25 p.

Nesbitt, H.W., Muir, I.J. Oxidation states y speciation of secondary products on pyrite y arsenopyrite reacted with mine waste waters y air. Mineral. Petrol. 62, (1998);p.123–144.

https://doi.org/10.1007/BF01173766

Nesbitt, H.W., Muir, I.J., Pratt, A.R. Oxidation of arsenopyrite by air y airsaturated, distilled water y implications for mechanisms of oxidation. Geochimica et Cosmochimica Acta. 59, (1995) p.1773–1786.

https://doi.org/10.1016/0016-7037(95)00081-A

NORDSTROM, D. Y SOUTHAM, G. Geomicrobiology of sulfide mineral oxidation. In : Reviews in mineralogy. Ed. Mineralogical Society of America. Vol. 35: (1997) p.361-382.

Olson, G., Brierley, J., Brierley, C. Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol. 63, (2003); 249–257.

https://doi.org/10.1007/s00253-003-1404-6

Ospina, J. Mineralogía del proceso de oxidación bacteriana de la arsenopirita y pirita. 2010. Tesis magíster en Ingeniería – Área Materiales y Procesos, Universidad Nacional de Colombia (Medellín).

Ossa, M. Biolixiviación de sulfuros (pirita-arsenopirita) utilizando cepas nativas de acidófilos como pretratamiento, para el beneficio de metales preciosos, mina El Zancudo, Titiribí, Antioquia. 2004. Tesis de Maestría, Biotecnología. Universidad Nacional de Colombia- Sede Medellín.

Ossa, M., Márquez, M., Zapata, D. Ensayos de biolixiviación de esfalerita variedad marmatita. Memorias XII Congreso Colombiano de Minería. Medellín. 2005.

Patra, P., Natarajan, K., Microbially-induced flocculation y flotation for pyrite separation from oxide gangue minerals. Minerals Engineering. 16, (2003) p.965–973.

https://doi.org/10.1016/S0892-6875(03)00268-1

PÉREZ, J., VELÁSQUEZ, J. Biolixiviación de un mineral refractario procedente de la mina el zancudo (Titiribí, Antioquia). 1998. Tesis Ingeniería Química. Universidad Nacional de Colombia- Sede Medellín.

Rawlings, D.E. The molecular genetics of Thiobacillus ferrooxidans y other mesophilic, acidophilic, chemolithotrophic, iron or sulfur oxidizing bacteria. Hydrometallurgy. Vol 59. (2001); p.187 – 201.

https://doi.org/10.1016/S0304-386X(00)00182-1

Rawlings, D.E. Heavy metal mining using microbes. Annual Review Microbiology. Vol 56. (2002). p.65 – 91.

https://doi.org/10.1146/annurev.micro.56.012302.161052

Rawlings, D.E., Review. Characteristics y adaptability of iron – y sulfur – oxidizing microorganisms used for the recovery of metals from minerals y their concentrates. Microbial Cell Factories. 2005.

https://doi.org/10.1186/1475-2859-4-13

Richardson, S., Vaughan, D.J. Arsenopyrite: a spectroscopic investigation of altered surfaces. Mineral. Mag 53, (1989)p.223–229.

https://doi.org/10.1180/minmag.1989.053.370.09

Rimstidt, J.D., Vaughan, D.J. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim. Cosmochim. Acta 67, (2003)p.873–880.

https://doi.org/10.1016/S0016-7037(02)01165-1

Rodriguez, Y., Ballester, A., Blazquez, M.L., Gonzalez, F., Munoz, J.A., Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite y sphalerite. Geomicrobiology Journal. 20, (2003);p.131–141.

https://doi.org/10.1080/01490450303880

Rohwerder, T., Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus y Acidiphilium spp. Microbiology. Vol 149. (2003);p.1699–1709.

https://doi.org/10.1099/mic.0.26212-0

ROSSI, Giovani., (Eds), Biohydrometallurgy. McGraw-Hill Book Company GmbH, Hamburg. 1990.

Sampson, M.I., Blake, R.C. The cell attachment y oxygen consumption of two strains of Thiobacillus ferrooxidans. Miner. Eng. 12, (1999). p.671–686.

https://doi.org/10.1016/S0892-6875(99)00036-9

SAMPSON, M.I., PHILIPS, C.V., BALL, A.S., Investigation of the attachment of Thiobacillus ferrooxidans to mineral surfaces using scanning electron microscopy analysis. Miner. Eng. 13, (2000). p-643–656.

Sand, W., Gehrke, T., Hallmann, R., Jozsa, P.G., Schippers, A., Biochemistry of bacterial leaching – direct vs. indirect bioleaching. Hydrometallurgy. Vol 59. (2001) p.159–175.

https://doi.org/10.1016/S0304-386X(00)00180-8

Sand, W., Gehrke, T., Hallmann, R., Schippers, A. Sulfur chemistry, y the (In)direct attack mechanism- a critical evalution of bacterial leaching. Applied Microbiology y Biotechnology. Vol 43. (1995)p.961–966.

https://doi.org/10.1007/BF00166909

Sasaki, K. Raman study of the microbially mediated dissolution of pyrite by Thiobacillus ferrooxidans. The Canadian Mineralogist. 35, (1997);p.999-1008.

Sasaki, K., Tsunekawa, M., Ohtsuka, T., Konno, H., The role of sulfur-oxidizing bacteria, Thiobacillus thiooxidans, in pyrite weathering. Colloids y Surfaces, A: Physicochemical y Engineering Aspects. 133, (1995); p.269–278.

https://doi.org/10.1016/S0927-7757(97)00200-8

Schaufuss, A.G., Nesbitt, H.W., Sciani, M.J., Hoecsht, H., Bancroft, M.G., Szargan, R., Reactivity of surface sites on fractured arsenopyrite (FeAsS) toward oxygen. Am. Mineral. 85, (2000); p.1754–1766.

https://doi.org/10.2138/am-2000-11-1219

Schippers, A., Jozsa, P.G., Sand, W., Sulfur chemistry in bacterial leaching of pyrite. Applied y Environmental Microbiology. Vol 62. 1999. p3424–3431.

Schippers, A., Sand, W., Bacterial leaching of metal sulfides proceeds by two indirect mechanism via thiosulfate or via polysufides y sulfur. Applied y environmental Microbiology. Vol 65. (1999) p.319–321.

Schippers, A., Thore, R., SAND.W. Intermediary sulfur compounds in pyrite oxidation: Implications for bioleaching y biodepyritization of coal. Applied Microbiology y Biotechnology. Vol 52. (1999) p.104 – 110.

https://doi.org/10.1007/s002530051495

Stolz, J.F., Basu, P., Santini, J.M., Oremland, R.S. Arsenic y selenium in microbial metabolism. Ann. Rev. Microbiol. 60, (2006). p.107–130

https://doi.org/10.1146/annurev.micro.60.080805.142053

Suzuki, I., Werkman, C. Glutathione y sulfur oxidation by Thiobacillus thiooxidans. Microbiology. 1, (1958);p.239-244.

Temple, K.L., Colmer, A.R. The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. Engineering Experiment Station, West Virginia University, Morgantown, West Virginia. 1951.

Tuffin, I.M., Hector, S.B., Deane, S.M., Rawlings, D.E., Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl. Environ. Microbiol. 72, (2006). p.2247–2253.

https://doi.org/10.1128/AEM.72.3.2247-2253.2006

Tuovinen, O.H., Bhatti, T.M., Bigham, J.M., Garcia, O., Lindstrom, E.B. Oxidative dissolution of arsenopyrite by mesophilic y moderately thermophilic acidophiles. Appl. Environ. Microbiol. 60, (1994); p.3268–3274.

VANSELOW, D. Mechanisms of bacterial oxidation of the copper sulphide mineral, covellite. Thesis B.Sc. Melbourne. 1976.

Vardanyan, N.S., Akopyan, V.P., Leptospirillum-Like bacteria y evaluation on their role in pyrite oxidation. Microbiology. Vol 72. (2003).p. 438–442.

https://doi.org/10.1023/A:1025092622894

Vargas, T. Aspectos microbiológicos en procesos biohidrometalúrgicos. Notas del Curso de Lixiviación Bacteriana de Minerales Sulfurados, Ingeominas, Colombia. 1996.

Vargas, T., Sanhueza, A., Escobar, A. Studies on the electrochemical mechanism of bacterial catalysis in pyrite dissolution. In: Biohydrometallurgical Technologies, A.E. Torma, J.E. Wey y V.L. Lakshmanan Eds., The Minerals, Metals y Materials Society, (1993)p.579-588

V.L. Lakshmanan Eds., The Minerals, Metals y Materials Society, (1993)p.579-588.

Walker, F.P., Schreiber, M.E., Rimstidt, J.D., Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochimica et Cosmochimica Acta. 70, (2006);p.1668–1676.

https://doi.org/10.1016/j.gca.2005.12.010

Wiersma, C.L., Rimstidt, J.D. Rates of reaction of pyrite y marcasite with ferric iron at pH 2. Geochem. Cosmochim. Acta 48, (1984);p.85–92.

https://doi.org/10.1016/0016-7037(84)90351-X

Williamson, M.A., Rimstidt, J.D. The kinetics y electrochemical rate determining step of aqueous pyrite oxidation. Geochim. Cosmochim. Acta 58, (1994);p.5443–5454.

https://doi.org/10.1016/0016-7037(94)90241-0

Yunmei, Y., Yongxuan, Z., Zhenmin, G., Gammons, C.H., Dexian, L., Rates of arsenopyrite oxidation by oxygen y Fe(III) at pH 1.8–12.6 y 15–45°C. Environ. Sci. Technol. 41, (2007); p.6460–6464.

https://doi.org/10.1021/es070788m

Yunmei, YU., Yongxuan, ZHU., Williams-Jones, A.E., Zhenmin, GAO., DEXIAN, LI. A kinetic study of the oxidation of arsenopyrite in acidic solutions: implications for the environment. Applied Geochemistry. 19, (2004);p.435–444.

https://doi.org/10.1016/S0883-2927(03)00133-1

Suzuki, I. Microbial leaching of metals from sulfide minerals. Biotechnology Advances, Vol. 19. (2001). p.119-132.

https://doi.org/10.1016/S0734-9750(01)00053-2

Zapata, D. Mineralogía del proceso de oxidación bacteriana de esfalerita, poveniente del distrito minero de Marmato (Caldas). Tesis magíster en Ingeniería – Área Materiales y Procesos, Universidad Nacional de Colombia (Medellín). (2006);132 p.

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.

Descargas

La descarga de datos todavía no está disponible.