Materiales vitrocerámicos obtenidos a partir de residuos sólidos tales como cenizas, escorias y vidrio: revisión

Palabras clave: vitrificación, cristalización, vidrio, tratamiento térmico, subproductos industriales

Resumen

El uso de residuos y subproductos industriales como reemplazo parcial o total de materias primas vírgenes para la producción de materiales se ha convertido en una parte vital de la gestión de desechos, lo cual ha dado lugar a tecnologías innovadoras que permiten extender su aplicación al desarrollo de nuevos productos, contribuyendo así a la menor contaminación ambiental y a los conceptos de la economía circular. En los últimos años, la tecnología de vitrificación de residuos se ha considerado un procedimiento atractivo para el tratamiento de diferentes tipos y mezclas de residuos para la obtención de vidrios y vitrocerámicas. El presente artículo hace una revisión de las investigaciones relacionadas con la producción de vitrocerámicas densas realizadas entre 1994 y 2019, específicamente las que han utilizado cenizas, escorias y residuos de vidrio. La revisión revela que se han acumulado considerables conocimientos y experiencia en el proceso de transformación de los desechos base silicatos en productos útiles de vidrio y vitrocerámicas con propiedades similares e incluso superiores a los de materiales convencionales, abriendo nuevos campos de aplicación en ceramicas avanzadas.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Estefanía Montoya-Quesada, Universidad del Valle
Grupo Materiales Compuestos, Universidad del Valle. Correo: estefania.montoya.quesada@correounivalle.edu.co
Mónica A. Villaquirán-Caicedo, Universidad del Valle
Grupo Materiales Compuestos, Universidad del Valle. Correo: monica.villaquiran@correounivalle.edu.co
Ruby Mejía de Gutiérrez, Universidad del Valle
Grupo Materiales Compuestos, Universidad del Valle. Correo: ruby.mejia@correounivalle.edu.co 

Referencias

Ali, A. S., Ishikawa, S., Nomura, K., Kuzmann, E., Homonnay, Z., Scrimshire, A., … Kubuki, S. (2019). Mössbauer and photocatalytic studies of CaFe2O4 nanoparticle-containing aluminosilicate prepared from domestic waste simulated slag. Journal of Radioanalytical and Nuclear Chemistry, 322(3), 1469–1476. https://doi.org/10.1007/s10967-019-06715-2

Ali, Ahmed S., Nomura, K., Homonnay, Z., Kuzmann, E., Scrimshire, A., Bingham, P. A., … Kubuki, S. (2019). The relationship between local structure and photo‑Fenton catalytic ability of glasses and glass‑ceramics prepared from Japanese slag. Journal of Radioanalytical and Nuclear Chemistry, 322(2), 751–761. https://doi.org/10.1007/s10967-019-06726-z

Barbieri, L., Manfredini, T., Queralt, I., Rincon, J. M., & Romero, M. (1997). Vitrification of fly ash from thermal power stations. Glass Technology, 38(5), 165–170. https://doi.org/10.1016/s0140-6701(98)80577-8

Barbieri, L, Corradi, A., & Lancellotti, I. (2001). Residuos para la producción de vidrios y vitrocerámicos. Materiales de Construcción, 51(253–264), 197–208.

Barbieri, Luisa, Ferrari, A. M., Lancellotti, I., Leonelli, C., Rincón, J. M., & Romero, M. (2000). Crystallization of (Na2O-MgO)-CaO-Al2O3-SiO2 Glassy Systems Formulated from Waste Products. Journal of the American Ceramic Society, 83(10), 2515–2520.

Barbieri, Luisa, Lancellotti, I., Manfredini, T., Pellacani, G. C., Rincón, J. M., & Romero, M. (2001). Nucleation and Crystallization of New Glasses from Fly Ash Originating from Thermal Power Plants. Journal of the American Ceramic Society, 58, 1851–1858.

Barbieri, Luisa, Lancellotti, I., Manfredini, T., Queralt, I., Rincón, J. M., & Romero, M. (1999). Design , obtainment and properties of glasses and glass- ceramics from coal fly ash. Fuel, 78, 271–276. https://doi.org/10.1016/S0016-2361(98)00134-3

Benavidez, E., Grasselli, C., & Quaranta, N. (2003). Densification of ashes from a thermal power plant. Ceramics International, 29(1), 61–68. https://doi.org/10.1016/S0272-8842(02)00090-1

Bernardo, E., Pontikes, Y., & Angelopoulos, G. N. (2012). Optimisation of low temperature sinter crystallisation of waste derived glass. Advances in Applied Ceramics, 111(8), 472–479. https://doi.org/10.1179/1743676112Y.0000000037

Callister, W. D. (2001). Fundamentals of materials science and engineering. In John Wiley & Sons (Ed.) (Fifth).

Cao, J., & Wang, Z. (2013). Effect of Na2O and heat-treatment on crystallization of glass-ceramics from phosphorus slag. Journal of Alloys and Compounds, 557, 190–195. https://doi.org/10.1016/j.jallcom.2013.01.013

Chen-Shiuan, F., & Kung-Cheh, L. (2013). Production of insulating glass ceramics from thin film transistor-liquid crystal display ( TFT-LCD ) waste glass and calcium fl uoride sludge. Journal of Cleaner Production, 57, 335–341.

Chen, H., Li, B., Zhao, M., Zhang, X., Du, Y., Shi, Y., & McCloy, J. S. (2019). Lanthanum modification of crystalline phases and residual glass in augite glass ceramics produced with industrial solid wastes. Journal of Non-Crystalline Solids, 524(May), 119638. https://doi.org/10.1016/j.jnoncrysol.2019.119638

Cheng, T. W., Ueng, T. H., Chen, Y. S., & Chiu, J. P. (2002). Production of glass-ceramic from incinerator fly ash. Ceramics International, 28, 779–783. https://doi.org/10.1016/S0272-8842(02)00043-3

Chinnam, R. K., Francis, A. A., Will, J., Bernardo, E., & Boccaccini, A. R. (2013). Review . Functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues. Journal of Non-Crystalline Solids, 365, 63–74.

Colombo, P., Brusatin, G., Bernardo, E., & Scarinci, G. (2003). Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Current Opinion in Solid State and Materials Science, 7(3), 225–239. https://doi.org/10.1016/j.cossms.2003.08.002

Çoruh, S., Ergun, O. N., & Cheng, T. W. (2006). Treatment of copper industry waste and production of sintered glass-ceramic. Waste Management and Research, 24(3), 234–241. https://doi.org/10.1177/0734242X06062600

DeGuire, E. J., & Risbud, S. H. (1984). Crystallization and properties of glasses prepared from Illinois coal fly ash. Journal of Materials Science, 19(6), 1760–1766.

Deubener, J., Allix, M., Davis, M. J., Duran, A., Höche, T., Honma, T., … Zhou, S. (2018). Updated definition of glass-ceramics. Journal of Non-Crystalline Solids, 501, 3–10. https://doi.org/10.1016/j.jnoncrysol.2018.01.033

Erkmen, Z. E., Çataklı, E., & Öveçoğlu, L. M. (2009). Characterisation and crystallisation kinetics of glass ceramics developed from Erdemir blast furnace slags containing Cr2O3 and TiO2 nucleants. Advances in Applied Ceramics, 108(1), 57–66. https://doi.org/10.1179/174367608X364294

Erol, M; Küçükbayrak, S; Ersoy-Meriçboyu, A. (2007). Characterization of coal fly ash for possible utilization in glass production. Fuel, 86, 706–714. https://doi.org/10.1016/j.fuel.2006.09.009

Francis, A. A. (2004). Conversion of blast furnace slag into new glass-ceramic material. Journal of the European Ceramic Society, 24(9), 2819–2824. https://doi.org/10.1016/j.jeurceramsoc.2003.08.019

Francis, A. A., Boccaccini, A. R., & Rawlings, R. D. (2002). Production of glass-ceramics from coal ash and waste glass mixtures. Key Engineering Materials, 206–213, 2049–2052. https://doi.org/10.4028/www.scientific.net/kem.206-213.2049

Francis, A. A., Rawlings, R. D., & Boccaccini, A. R. (2002). Glass-ceramics from mixtures of coal ash and soda-lime glass by the petrurgic method. Journal of Materials Science, 21, 975–980. https://doi.org/10.1016/S0140-6701(03)81931-8

Francis, A. A., Rawlings, R. D., Sweeney, R., & Boccaccini, A. R. (2002). Processing of coal ash into glass ceramic products by powder technology and sintering. Glass Technology, 43(2), 58–62.

Francis, A. A., Rawlings, R. D., Sweeney, R., & Boccaccini, A. R. (2004). Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass. Journal of Non-Crystalline Solids, 333, 187–193. https://doi.org/10.1016/j.jnoncrysol.2003.09.048

Hanpongpun, W., Jiemsirilers, S., & Thavorniti, P. (2007). Effects of Clear and Amber Cullet on Physical and Mechanical Properties of Glass-Ceramics Containing Zinc Hydrometallurgy Waste. Journal of Solid Mechanics and Materials Engineering, 1(11), 1305–1312. https://doi.org/10.1299/jmmp.1.1305

Hieu, D., Wang, K., Chen, J., Xuan, B., & Hoang, B. (2012). Glass – ceramic from mixtures of bottom ash and fly ash. Waste Management, 32, 2306–2314. https://doi.org/10.1016/j.wasman.2012.05.040

Höland, W., & Beall, G. (2012). Glass-Ceramic Technology (Second). John Wileys & Sons.

Isa, H. (2011). A review of glass-ceramics production from silicate wastes. International Journal of Physical Sciences, 6(30), 6781–6790. https://doi.org/10.5897/IJPS11.153

Jia, R., Deng, L., Yun, F., Li, H., Zhang, X., & Jia, X. (2019). Effects of SiO2/CaO ratio on viscosity, structure, and mechanical properties of blast furnace slag glass ceramics. Materials Chemistry and Physics, 233(March), 155–162. https://doi.org/10.1016/j.matchemphys.2019.05.065

Kalirajan, M., Ranjeeth, R., Vinothan, R., Vidyavathy, S. M., & Srinivasan, N. R. (2016). Influence of glass wastes on the microstructural evolution and crystallization kinetics of glass-ceramic glaze. Ceramics International, 42(16), 18724–18731. https://doi.org/10.1016/j.ceramint.2016.09.011

Karamanov, A. (2009). Granite like materials from hazardous wastes obtained by sintercrystallisation of glass frits. Advances in Applied Ceramics, 108(1), 14–21. https://doi.org/10.1179/174367608X364302

Karamanov, Alexander, Aloisi, M., & Pelino, M. (2007). Vitrification of copper flotation waste. Journal of Hazardous Materials, 140(1–2), 333–339. https://doi.org/10.1016/j.jhazmat.2006.09.040

Karamanov, Alexander, Gutzow, I., Chomakov, I., Christov, J., & Kostov, L. (1994). Synthesis of wall-covering glass-ceramics from waste raw materials. Glass Science and Technology Frankfurt, 67(8), 227–230. https://doi.org/10.1016/0140-6701(95)80729-2

Karamberi, A., & Moutsatsou, A. (2004). Characterization of glass and glass-ceramics obtained from industrial by-products. In Waste Management and the Environment II (pp. 377–385).

Karmakar, B., Rademann, K., & Stepanov, A. (Eds.). (2016). Glass nanocomposites: Synthesis, properties and applications. Elsevier.

Khaidir, R. E. M., Fen, Y. W., Zaid, M. H. M., Matori, K. A., Omar, N. A. S., Anuar, M. F., … Azman, A. Z. K. (2019). Optical band gap and photoluminescence studies of Eu 3+ -doped zinc silicate derived from waste rice husks. Optik, 182(December 2018), 486–495. https://doi.org/10.1016/j.ijleo.2019.01.061

Lee, C. S., Matori, K. A., Aziz, S. H. A., Kamari, H. M., Ismail, I., & Zaid, M. H. M. (2017). Fabrication and characterization of glass and glass-ceramic from rice husk ash as a potent material for opto-elecronic applications. Journal of Materials Science: Materials in Electronics, 28(23), 17611–17621.

Liu, B., Yang, Q. W., & Zhang, S. G. (2019). Integrated utilization of municipal solid waste incineration fly ash and bottom ash for preparation of foam glass–ceramics. Rare Metals, 38(10), 914–921. https://doi.org/10.1007/s12598-019-01314-2

Ljati, E., Kamusheva, A., Grozdanov, A., Paunovi, P., & Karamanov, A. (2015). Optimal thermal cycle for production of glass – ceramic based on wastes from ferronickel manufacture. Ceramics International, 41, 11379–11386. https://doi.org/10.1016/j.ceramint.2015.05.098

Lu, J., Lu, Z., Peng, C., Li, X., & Jiang, H. (2014). Influence of particle size on sinterability , crystallisation kinetics and flexural strength of wollastonite glass-ceramics from waste glass and fly ash. Materials Chemistry and Physics, 148(1–2), 449–456.

Luan, J., Li, A., Su, T., & Cui, X. (2010). Synthesis of nucleated glass-ceramics using oil shale fly ash. Journal of Hazardous Materials, 173, 427–432. https://doi.org/10.1016/j.jhazmat.2009.08.099

Mihailova, I. K., Djambazki, P. R., & Mehandjiev, D. (2011). The effect of the composition on the crystallization behavior of sintered glass-ceramics from blast furnace slag. Bulgarian Chemical Communications, 43(2), 293–300.

Montazerian, M., Singh, S. P., & Dutra, E. (2015). An analysis of glass-ceramic research and commercialization. American Ceramic Society Bulletin, 94(4), 30–35.

Montoya-Quesada, E., Villaquirán-Caicedo, M. A., Mejía de Gutiérrez, R., & Muñoz-Saldaña, J. (2019). Effect of ZnO content on the physical, mechanical and chemical properties of glass-ceramics in the CaO–SiO2–Al2O3 system. Ceramics International. https://doi.org/10.1016/J.CERAMINT.2019.10.154

Öveçoǧlu, M. L. (1998). Microstructural characterization and physical properties of a slag-based glass-ceramic crystallized at 950 and 1100 °c. Journal of the European Ceramic Society, 18(2), 161–168. https://doi.org/10.1016/S0955-2219(97)00094-0

Pan, D. A., Zhang, S. G., Bao, H. B., Guo, B., & Liu, B. (2015). A method for preparing Hedenbergite Glass Ceramics by Lead Slag. China.

Pan, D., Li, L., Tian, X., Wu, Y., Cheng, N., & Yu, H. (2019). A review on lead slag generation, characteristics, and utilization. Resources, Conservation and Recycling, 146, 140–155. https://doi.org/10.1016/j.resconrec.2019.03.036

Pelino, M., Cantalini, C., & Rincon, J. M. (1997). Preparation and properties of glass-ceramic materials obtained by recycling goethite industrial waste. Journal of Materials Science, 32(17), 4655–4660.

Ponsot, I. M. M. M., Pontikes, Y., Baldi, G., Chinnam, R. K., Detsch, R., Boccaccini, A. R., & Bernardo, E. (2014). Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste. Materials, 7, 5565–5580.

Rawlings, R. D., Wu, J. P., & Boccaccini, A. R. (2006). Glass-ceramics : Their production from wastes — A Review. Journal of Materials Science, 41, 733–761. https://doi.org/10.1007/s10853-006-6554-3

Rincón, J. M., & Romero, M. (1996). Los materiales vitrocerámicos en la construcción. Materiales de Construcción, 46(242–243), 91–106.

Romero, M; Rincón, Jesús; González, Carlos; D’Ovidio, Carlos; Esparza, D. (2001). Magnetic properties of glasses with high iron oxide content. Materials Research Bulletin, 36(7–8), 1513–1520. https://doi.org/10.1016/S0025-5408(01)00630-4

Romero, M., Kovacova, M., & Rincón, J. M. (2008). Effect of particle size on kinetics crystallization of an iron-rich glass. Journal of Materials Science, 43(12), 4135–4142. https://doi.org/10.1007/s10853-007-2318-y

Romero, M., & Rincón, J. M. (2000). El proceso de vitrificación/cristalización controlada aplicado al reciclado de residuos industriales inorgánicos. Boletín de La Sociedad Española de Cerámica y Vidrio, 39(1), 155–163.

Sarrigani, G. V., & Amiri, I. S. (2019). Literature Review of Glass-Ceramic and Willemite Production from Waste Materials. In: Willemite-Based Glass Ceramic Doped by Different Percentage of Erbium Oxide and Sintered in Temperature of 500-1100C. SpringerBriefs in Electrical and Computer Engineeri. Springer, Cham. https://doi.org/https://doi.org/10.1007/978-3-030-10644-7_2

Savvilotidou, V., Kritikaki, A., Stratakis, A., Komnitsas, K., & Gidarakos, E. (2019). Energy efficient production of glass-ceramics using photovoltaic (P/V) glass and lignite fly ash. Waste Management, 90, 46–58. https://doi.org/10.1016/j.wasman.2019.04.022

Shackelforld, J. (2005). Introducción a la ciencia de los materiales para ingenieros (Sexta). Madrid: PEARSON EDUCACIÓN, S.A.

Silva, R. V., de Brito, J., Lye, C. Q., & Dhir, R. K. (2017). The role of glass waste in the production of ceramic-based products and other applications: A review. Journal of Cleaner Production, 167(20), 346–364. https://doi.org/10.1016/j.jclepro.2017.08.185

Suzdal’tsev, E. I. (2002). Effect of temperature on the structuring and properties of glass and glass ceramic of lithium aluminosilicate composition. Refractories and Industrial Ceramics, 43, 127–135.

Teixeira, S. R., Magalhães, R. S., Arenales, A., Souza, A. E., Romero, M., & Rincón, J. M. (2014). Valorization of sugarcane bagasse ash: Producing glass-ceramic materials. Journal of Environmental Management, 134, 15–19. https://doi.org/10.1016/j.jenvman.2013.12.029

Valderrama, D. M. A., Cuaspud, J. A. G., Roether, J. A., & Boccaccini, A. R. (2019). Development and characterization of glass-ceramics from combinations of slag, fly ash, and glass cullet without adding nucleating agents. Materials, 12(12), 1–17. https://doi.org/10.3390/ma12122032

Wan, W. N., Matori, K. A., Mohd, M. H., Zainuddin, N., Ahmad, M. Z., Abdul, N. A., … Kul, E. (2019). Effect of sintering temperature on physical and structural properties of Alumino-Silicate-Fluoride glass ceramics fabricated from clam shell and soda lime silicate glass. Results in Physics, 12, 1909–1914. https://doi.org/10.1016/j.rinp.2019.01.077

Wang, S., & Liang, K. (2007). High infrared radiance glass-ceramics obtained from fly ash and titanium slag. Chemosphere, 69(11), 1798–1801. https://doi.org/10.1016/j.chemosphere.2007.06.016

Wang, Z., Ni, W., Jia, Y., Zhu, L., & Huang, X. (2010). Crystallization behavior of glass ceramics prepared from the mixture of nickel slag , blast furnace slag and quartz sand. Journal of Non-Crystalline Solids, 356(31–32), 1554–1558. https://doi.org/10.1016/j.jnoncrysol.2010.05.063

Yang, Z., Lin, Q., Lu, S., He, Y., Liao, G., & Ke, Y. (2014). Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag. Ceramics International, 40(5), 7297–7305. https://doi.org/10.1016/j.ceramint.2013.12.071

Yang, Z., Lin, Q., Xia, J., He, Y., Liao, G., & Ke, Y. (2013). Preparation and crystallization of glass-ceramics derived from iron-rich copper slag. Journal of Alloys and Compounds, 574, 354–360. https://doi.org/10.1016/j.jallcom.2013.05.091

Yoon, S. D., & Yun, Y. H. (2008). Chemical durability of glass-ceramics obtained from waste glass and fly ash. Journal of Ceramic Processing Research, 9(2), 135–139.

Zeng, L., Sun, H. juan, Peng, T. jiang, & Zheng, W. miao. (2019). The sintering kinetics and properties of sintered glass-ceramics from coal fly ash of different particle size. Results in Physics, 15(October), 102774. https://doi.org/10.1016/j.rinp.2019.102774

Publicado
2020-06-26
Cómo citar
Montoya-Quesada, E., Villaquirán-Caicedo, M. A., & Mejía de Gutiérrez, R. (2020). Materiales vitrocerámicos obtenidos a partir de residuos sólidos tales como cenizas, escorias y vidrio: revisión. Informador Técnico, 84(2). https://doi.org/10.23850/22565035.2900
Sección
Artículo de Revisión

Artículos más leídos del mismo autor/a