Tratamiento de agua basado en la adsorción de crudo en nanopartículas polares y no polares
PDF
XML

Palabras clave

Adsorption
Emulsions
Nanoparticles
Vacuum residue
Sorption kinetic Adsorción
Emulsión O/W
Nanopartículas
Residuo de refinería
Cinética

Cómo citar

Martínez Aguilar, M., Cortés, F. B., & Franco Ariza, C. A. (2013). Tratamiento de agua basado en la adsorción de crudo en nanopartículas polares y no polares. Informador Técnico, 77(1), 59. https://doi.org/10.23850/22565035.45

Resumen

Uno de los impactos de la producción de petróleo es el aumento de la contaminación debido a la descarga de aguas de formación. Este documento  presenta el estudio de la adsorción de crudo en nanopartículas de sílice funcionalizada con residuos de refinería (VR) al 2 y al 4 %wt. Además de zeolita y zeolita modificada (2 y 4%wt de VR) para reducir la cantidad de crudo en las emulsiones crudo/agua (W/O). Los modelos de Langmuir y Freundlich se usaron para ajustar las isotermas de adsorción a los datos experimentales. El rango de la concentración de crudo inicial fue desde 200 hasta 2000 mg/l. El cambio en la concentración después de la adsorción se determinó utilizando un espectrofotómetro UV visible. La cantidad máxima de adsorción se obtuvo con nanopartículas de sílice modificada al 4% para una concentración inicial de 200 mg/g con una eliminación de crudo del 100%, 9 mg/g más que la obtenida con zeolita modificada de 191 mg/g a la misma concentración. Los modelos de pseudo primer y pseudo segundo orden se usaron para ajustar los datos experimentales de la cinética de adsorción obtenidos a diferentes concentraciones de crudo, con mejores resultados para el modelo de pseudo segundo orden.
https://doi.org/10.23850/22565035.45
PDF
XML

Citas

AHMMARUZZAMAN, M. A review on the utilization of fly ash. En: Program Energy Combustion Science. No. 36. (Jun., 2010); p. 327-363.

https://doi.org/10.1016/j.pecs.2009.11.003

ALTENOR, S.; CARENE, B.; EMMANUEL, E.; LAMBERT, J.; EHRHARDT, J.J. and GASPARD, S. Adsorption studies of mehylene blue and phenol onto vertiver roots activated carbon prepared by chemical activation. En: Journal of Hazardous Materials. No. 165 1-3 (Jun., 2009); p. 1029-1039. DOI: 10.1016/j.jhazmat.2008.10.133.

https://doi.org/10.1016/j.jhazmat.2008.10.133

Annual Book of ASTM Standards. En: American Society of Testing Materials, No. 11.01 y 11.02. Philadelphia, 1992.

Appasamy, D.; Roberts, C.L. and Williams, C.D. Physical and chemical characterization of canal sediments and their potential remediation using zeolites. En: 11th International UFZ-Deltares/TNO Conference on Management of Soil, Groundwater & Sediment. (Salzburg, Austria). 2010. p. 22-24.

BRIAN, R.E. Oily wastewater treatment by ultrafiltration: pilot-scale results and full-scale desing. En: Practice periodical of hazardous, toxic, and radioactive waste management. No.2-3 (1998); p. 100-107. ISSN 1090-025X.

CORTÉS F.B.; MEJÍA, J.M.; RUÍZ, M.A.; BENJUMEA, P. and RIFFEL, D.B. Sorption of Asphaltenes onto Nanoparticles of Nickel Oxide Supported on Nanoparticulated Sílice Gel. En: Energy and Fuels. No. 26-3 (Feb., 2012); p. 1725-1730. DOI: 10.1021/ef201658c.

https://doi.org/10.1021/ef201658c

FRANCO, C.A.; GIRALDO, J.; RUÍZ, M.A.; ROJANO, B.A. and CORTÉS, F.B. Asphaltenes Sorption Onto Formation Rock: Evaluation of the Wash in the Adsorptive Properties. En: Dyna. No. 176 (Jul., 2012); p. 81-89. ISSN: 0012-7353

FRANCO, C.A.; NASSAR, N.N.; RUÍZ, M.A.; PEREIRA-ALMAO, P.R.. and CORTÉS, F.B. Nanoparticles for Inhibition of Asphaltenes Damage: Adsorption Study and Displacement Test on Porous Media. En: Energy and Fuels. (May., 2013); DOI:10.1021/ef4000825.

https://doi.org/10.1021/ef4000825

FRANCO, C.; PATIÑO, E.; BENJUMEA, P.; RUÍZ, M.A. and CORTÉS, F.B. Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. En: Fuel. No. 105 (Mar., 2013); p. 408-414.

https://doi.org/10.1016/j.fuel.2012.06.022

FRANK, L. Adsorption Technology a Step-by-Step approach to process evaluation and application. New York, Marcel Dekker, (Oct., 1985); p. 223. DOI: 10.1002/actp.1987.010381018.

https://doi.org/10.1002/actp.1987.010381018

Freundlich, H.M.F. Over the adsorption in solution. En: Journal of Physical Chemistry. No. 57 (Mar., 1906), p. 385-470.

Huttenloch, P.; Roehl, K.E. and Czurda, K. Sorption of non-polar aromatic contaminants by chlorosilane surface modified natural minerals. En: Environmental Science and Technology. No. 35-21 (Nov., 2005); p. 4260-4262.

IGWE, J.C. and ABIA, A.A. , Adsorption kinetics and intraparticulate diffusivities for bioremediation of Co (II), Fe (II) and Cu (II) ions from waste water using modified and unmodified maize cob En: International Journal of Physical Sciences. No. 2 (May., 2007); p. 119-127.

IVANOVA, S.; LOUIS, B. and LEDOUX, M. J. Autoassembly of nanofibrous zeolite crystals via silicon carbide substrate self-transformation. En: Journal of the American Chemical Society. No 129 (Sep., 2007); p. 3383, 3390. DOI: 10.1021/ja0686209.

https://doi.org/10.1021/ja0686209

KHRAISHEH, M.A.M.; AL-DEGS, Y.S. and MCMINN, W.A.M. Remediation of wastewater containing heavy metals using raw and modified diatomite. En: Chemical Engineering Journal. No. 99 (2004); p. 77-184. ISSN: 13858947.

Kong, X. Applications of Micro and Nano Technologies in the Oil and Gas Industry-An Overview of the Recent Progress. En: Abu Dhabi International Petroleum Exhibition and Conference. (1:2010: Abu Dhabi). Abu Dhabi: SPE 138241. 2010. 11 p.

https://doi.org/10.2118/138241-MS

Langmuir, I. The constitution and fundamental properties of solids and liquids, Journal of the American Chemical Society. No. 38 (Sep., 1916); p. 2221-2295.

https://doi.org/10.1021/ja02268a002

MODHERA, B.; CHAKRABORTY, M.; PARIKH, P.A. and JASHRA, R.V. Synthesis of nano-crystalline zeolite beta: effects of crystallization parameters. En: Crystal Research and Technology. No. 44 (Oct., 2009); p. 379-385. DOI 10.1002/crat.200800474.

https://doi.org/10.1002/crat.200800474

MOWLA, D.; KARIMI, G. AND SALEHI, K. Modeling of the adsorption breakthrough behaviors of oil from salty waters in a fixed bed of commercial organoclay/sand mixture. En: Chemical Engineering Journal. No. 218 (Feb., 2013); p. 116-125.

Najafi, M.; Yousefi, Y. and Rafati, A.A. Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized sílice nano hollow sphere and sílice gel. En: Separation and Purification Technology. No. 85 (Sept., 2012); p. 193-205.

OKIEL, K.; EL-SLAYED, M. and EL-KADY, M. Treatment of oil-water emulsions by adsorption onto activated carbon, bentonite and deposited carbon. En: Egyptian Journal of Petroleum. No.20 (Jun., 2011); p. 9-15.

https://doi.org/10.1016/j.ejpe.2011.06.002

RANDALL, Q. S. and HUPP J. Prospects for nanoporous metal-organic materials in advanced separations processes, AIChE Journal. No. 50-6 (2004); p. 1090-1095. ISSN: 1547-5905.

RIOS, C.A.; APPASAMY, D.; ROBERTS, C.L. and WILLIAMS, C.D. An integrated remediation system using synthetic and natural zeolites for treatment of waste water and contaminated sediments. En: Dyna. No. 170 (Mar., 2011); p. 125-134. ISSN 0012-7353.

Rouquerol, F.; Rouquerol, J. and Sing, K.S. Adsorption by powders and powders and porous solids. London (UK): Academic Press; 1999. ISBN: 978-0-12-598920-6.

RUDZINSKI, W. and PLAZINSKI, W. Kinetics of solute adsorption at solid/solution interfaces: a theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport. En: Journal of Physical Chemistry. No. 110 (Ago., 2006); p. 16514-16525. DOI: 10.1021/jp061779n.

https://doi.org/10.1021/jp061779n

RUPESH, M.B.; PRASAD, B.; MISHRA, I.M. and KAILAS, L.W. Oil field effluent water treatment for safe disposal by electroflotation. En: Chemical Engineering Journal. No. 137-3 (Abr., 2008); p. 503-509. ISSN: 13858947.

SYED, S.; ALHAZZAA, M.I. and ASIF, M. Treatment of oily water using hydrophobic nano-sílice. Chemical Engineering Journal. No.167 (Feb., 2011); p. 99-103. ISSN: 13858947.

Wang, D.; Mclaughlin, E.; Pfeffer, R. and Lin, Y.S. Adsorption of oils from pure liquid and oil-water emulsion on hydrophobic sílice aerogels. En: Separation and Purification Technology. No. 99. (Oct., 2012); p. 28-35.

XIAOBING, L.; CHUNJUAN, Z. and JIONGTIAN, L., Adsorption of oil from waste water by coal: characteristics and mechanism. En: Mining Science and Technology. No. 20-5 (Sept.2010); p. 778-781. DOI:10.1016/j.carbpol.2007.06.017

https://doi.org/10.1016/j.carbpol.2007.06.017

Yang, T.R. Adsorbents: Fundamentals and applications. Estados Unidos. Wiley-Interscience, Hoboken, 2003; p. 403 ISBN: 0471297410.

https://doi.org/10.1002/047144409X.indsub

Descargas

Los datos de descargas todavía no están disponibles.