Técnicas emergentes de extracción de β-caroteno para la valorización de subproductos agroindustriales de la zanahoria (Daucus carota L.): una revisión
XML
PDF
MP3
PDF English
XML English

Palabras clave

carrot
extraction
green solvent
yield
Daucus carota L.
β-carotene
natural colorant extracción
solvente verde
rendimiento
zanahoria
Daucus carota L.
β-caroteno
colorante natural

Cómo citar

Otálora-Orrego, D., & Martin G., D. A. (2020). Técnicas emergentes de extracción de β-caroteno para la valorización de subproductos agroindustriales de la zanahoria (Daucus carota L.): una revisión. Informador Técnico, 85(1), 83–106. https://doi.org/10.23850/22565035.2857

Resumen

El objetivo de la presente revisión es reunir, contrastar y analizar algunas de las técnicas convencionales y no convencionales de extracción de β-caroteno a partir de la zanahoria (Daucus carota L.), a través de un análisis bibliométrico de estudios e investigaciones recientes, en los que confluyen numerosas técnicas, parámetros y hallazgos. Asimismo, establecer las posibles contribuciones de la extracción con solventes verdes para estos procesos, permitiendo su aplicabilidad a escala industrial para el aprovechamiento de los subproductos agroindustriales de este vegetal. La zanahoria es rica en carotenoides, en especial β-caroteno, fuente de provitamina A, utilizada como colorante natural en la industria de alimentos y farmacéutica. La extracción asistida con microondas (MAE por su sigla en inglés), con enzimas (EAE por su sigla en inglés) y en fluidos supercríticos (SFE por su sigla en inglés), han sido evaluadas en la zanahoria y comparadas con las técnicas convencionales de extracción (CSE por su sigla en inglés), encontrando rendimientos y eficiencias similares e incluso superiores. Sin embargo, la extracción asistida con ultrasonido (UAE por su sigla en inglés), muestra resultados satisfactorios y considerablemente mayores (157,0 mg b-caroteno/100 g base seca). Se requieren estudios posteriores para optimizar las condiciones y los parámetros de extracción, y evaluar las condiciones de conservación de la materia prima y del extracto final que aseguren una mayor estabilidad del producto y, por ende, un rendimiento de extracción superior, al igual que considerar alternativas verdes de extracción para reducir el impacto ambiental.

https://doi.org/10.23850/22565035.2857
XML
PDF
MP3
PDF English
XML English

Citas

Aissou, Mohamed; Chemat-Djenni, Zoubida; Yara-Varón, Edinson; Fabiano-Tixier, Anne; Chemat, Farid (2017). Limonene as an agro-chemical building block for the synthesis and extraction of bioactive compounds. Utilisation du limonène comme synthon agrochimique pour la synthèse et l'extraction de produits naturels. Comptes Rendus Chimie, 20 (4), 346-358. https://doi.org/10.1016/j.crci.2016.05.018

Armenta, Sergio; Garrigues, Salvador; de la Guardia, Miguel (2015). The role of green extraction techniques in Green Analytical Chemistry. TrAC Trends in Analytical Chemistry, 71, 2-8. https://doi.org/10.1016/j.trac.2014.12.011

Armenta, Sergio; Garrigues, Salvador; Esteve-Turrillas, Francesc; de la Guardia, Miguel (2019). Green extraction techniques in green analytical chemistry. TrAC Trends in Analytical Chemistry, 116, 248-253. https://doi.org/10.1016/j.trac.2019.03.016

Barzee, Tyler; El- Mashad, Hamed; Zhang, Ruihong; Pan, Zhongli (2019). Chapter 12 - Carrots. In: Z. Pan; R. Zhang; S. Zicari (Eds.), Integrated Processing Technologies for Food and Agricultural By-Products (pp. 297-330). Academic Press. https://doi.org/10.1016/B978-0-12-814138-0.00012-5

Bogacz-Radomska, Ludmila; Harasym, Joanna; Piwowar, Arkadiusz (2020). 10 - Commercialization aspects of carotenoids. In: Carotenoids: Properties, Processing and Applications (pp. 327-357). Elsevier. https://doi.org/10.1016/B978-0-12-817067-0.00010-5

Bogacz, Ludmila; Harasym, Joanna (2018). β-Carotene—properties and production methods. Food Quality and Safety, 2(2), 69-74. https://doi.org/10.1093/fqsafe/fyy004

Boukroufa, Meryem; Boutekedjiret, Chahrazed; Chemat, Farid (2017). Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resource-Efficient Technologies, 3(3), 252-262. https://doi.org/10.1016/j.reffit.2017.08.007

Clementz, Adriana; Torresi, Pablo; Molli, José; Cardell, Daniel; Mammarella, Enrique; Yori, Juan (2019). Novel method for valorization of by-products from carrot discards. LWT, 100, 374-380. https://doi.org/10.1016/j.lwt.2018.10.085

Cheng, Shi; Khoo, Hock; Kong, Kin; Prasad, Krishnamurthy; Galanakis, Charis (2020). 8 - Extraction of carotenoids and applications. In: C. M. Galanakis (Ed.), Carotenoids: Properties, Processing and Applications (pp. 259-288). Academic Press. https://doi.org/10.1016/B978-0-12-817067-0.00008-7

Chuyen, Hoang; Nguyen, Minh; Roach, Paul; Golding, John; Parks, Sophie (2018). Microwave‐assisted extraction and ultrasound‐assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food science y nutrition, 6(1), 189-196. https://doi.org/10.1002/fsn3.546

da Silva, Heloísa; Iwassa, Isabela; Marques, Janaina; Postaue, Najla; Stevanato, Natália; da Silva, Camila (2020). Enrichment of sunflower oil with β‐carotene from carrots: Maximization and thermodynamic parameters of the β‐carotene extraction and oil characterization. Journal of Food Processing and Preservation, 44(4), e14399. https://doi.org/10.1111/jfpp.14399

da Silveira, Mirele; de Oliveira, Luciana; Nunes-Pinheiro, Diana; da Silva, Francisco; de Sousa, Felipe; de Siqueira, Luciana; Cardoso, Andréia; Goebel, Tamiris; Sanches, Ana; Nabavi, Seyed; de Melo; Dirce (2020). Chapter 12 - Analysis of tetraterpenes and tetraterpenoids (carotenoids). In: A. Sanches; S. Nabavi; M. Saeedi; S. Nabavi (Eds.), Recent Advances in Natural Products Analysis (pp. 427-456). Elsevier. https://doi.org/10.1016/B978-0-12-816455-6.00012-3

de Andrade, Micael; Charalampopoulos, Dimitris; Chatzifragkou, Afroditi (2018). Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. The Journal of supercritical fluids, 133(1), 94-102. https://doi.org/10.1016/j.supflu.2017.09.028

Desobry, Stephane; Netto, Flavia; Labuza, Theodore (1998). Preservation of β-carotene from carrots. Critical reviews in food science and nutrition, 38(5), 381-396. https://doi.org/10.1080/10408699891274255

Elik, Aysel; Yanık, Derya; Göğüş, Fahrettin (2020). Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. LWT, 123, 109100. https://doi.org/10.1016/j.lwt.2020.109100

Ghosh, Debasree; Biswas, Prasanta (2016). Enzyme-aided extraction of carotenoids from pumpkin tissues. Indian Chemical Engineer, 58(1), 1-11. https://doi.org/10.1080/00194506.2015.1046697

Gonzalez, Laura; Gómez, Sandra; Abad, Paula (2017). Aprovechamiento de residuos agroindustriales en Colombia. RIAA, 8 (2), 141-150.

Goula, Athanasia; Ververi, Maria; Adamopoulou, Anna; Kaderides, Kyriakos (2017). Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics Sonochemistry, 34, 821-830. https://doi.org/10.1016/j.ultsonch.2016.07.022

Hasan, Hamade; Mohamad, Abdelrazinq; Aldaaiek, Gebreel (2019). Extraction and Determination the of Beta carotene content in carrots and tomato samples Collected from some markets at El-Beida City, Libya. EPH-International Journal of Applied Science, 1(1), 105-110. https://ephjournal.org/index.php/as/article/view/1327

Hiranvarachat, Bhudsawan; Devahastin, Sakamon (2014). Enhancement of microwave-assisted extraction via intermittent radiation: Extraction of carotenoids from carrot peels. Journal of Food Engineering, 126, 17-26. https://doi.org/10.1016/j.jfoodeng.2013.10.024

Juliana, Juliana; Indrawati, Renny; Yuliati, Leny (2019). Effects of pH and Storage Time on the Stability of Papaya and Carrot Extracts. Indonesian Journal of Natural Pigments, 1(1), 25-25. https://doi.org/10.33479/ijnp.2019.01.1.25

Kumari, Suresh; Rajarani, A.; Bansal, N.; Dahuja, A.; Praveen, Shelly (2019). Extraction and estimation of provitamin A carotenoids from carrot. In: V. Krishnan; S. Kumar; S. Praveen (Eds.). Omics meet Plant Biochemistry: Applications in nutritional enhancement with one health perspective (pp. 56-55). New Delhi: Head, Division of Biochemistry ICAR-Indian Agricultural Research Institute.

Kyriakopoulou, Konstantina; Papadaki, Sofia; Krokida, Magdalini (2015). Life cycle analysis of β-carotene extraction techniques. Journal of Food Engineering, 167, 51-58. https://doi.org/10.1016/j.jfoodeng.2015.03.008

Lau, WAI; Van, Hoang; Vuong, Quan (2018). Physical properties, carotenoids and antioxidant capacity of carrot (Daucus carota L.) peel as influenced by different drying treatments. International Journal of Food Engineering, 14(3). https://doi.org/10.1515/ijfe-2017-0042

Li, Ying; Fabiano-Tixier, Anne; Tomao, Valérie; Cravotto, Giancarlo; Chemat, Farid (2013). Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics Sonochemistry, 20(1), 12-18. https://doi.org/10.1016/j.ultsonch.2012.07.005

Martínez, Maritza; Quintero, Jelen (2017). Estado actual de los desperdicios de frutas y verduras en Colombia. UTP-Ridda2. Recuperado de: http://ridda2.utp.ac.pa/handle/123456789/2887

Martins, Natália; Ferreira, Isabel (2017). Wastes and by-products: Upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends in Food Science y Technology, 62, 33-48. https://doi.org/10.1016/j.tifs.2017.01.014

Miękus, Natalia; Iqbal, Aamir; Marszałek, Krystian; Puchalski, Czeslaw; Świergiel, Artur (2019). Green Chemistry Extractions of Carotenoids from Daucus carota L.—Supercritical Carbon Dioxide and Enzyme-Assisted Methods. Molecules, 24(23), 4339. https://doi.org/10.3390/molecules24234339

Ministerio de Agricultura (2017). Evaluaciones Agropecuarias Municipales - Zanahoria. Recuperado de: https://www.agronet.gov.co/Lists/Boletin/Attachments/2535/TERCER%20INFORME%20COSTOS%20DE%20PRODUCCION%20MADR_V4.pdf.

Mirheli, Maryam; Dinani, Somayeh (2018). Extraction of β-carotene pigment from carrot processing waste using ultrasonic-shaking incubation method. Journal of Food Measurement and Characterization, 12(3), 1818-1828.

Moreno, Antonio; Ballesteros, Mercedes; Negro, María (2020). 5 - Biorefineries for the valorization of food processing waste. The Interaction of Food Industry and Environment (pp. 155-190). Elsevier. https://doi.org/10.1016/B978-0-12-816449-5.00005-9

Murray, Michael; Capelli, Bob (2020). 57 - Beta-Carotene and Other Carotenoids. In: J. Pizzorno; M. Murray (Eds.),Textbook of Natural Medicine (5ta Edition) (pp. 443-450). Churchill Livingstone. https://doi.org/10.1016/B978-0-323-43044-9.00057-1

Ngamwonglumlert, Luxsika; Devahastin, Sakamon; Chiewchan, Naphaporn (2017). Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Critical reviews in food science and nutrition, 57(15), 3243-3259. https://doi.org/10.1080/10408398.2015.1109498

Nowacka, MMalgorzata; Wedzik, Malgorzata (2016). Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Applied Acoustics, 103, 163-171. https://doi.org/10.1016/j.apacoust.2015.06.011

Ojha, Shikha; Aznar, Ramón; O'Donnell, Colm; Tiwari, Brijesh (2020). Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC Trends in Analytical Chemistry, 122, 115663. https://doi.org/10.1016/j.trac.2019.115663

Owolade, S.; Akinrinola, A.; Popoola, F.; Aderibigbe, O.; Ademoyegun, O.; Olabode, I. (2017). Study on physico-chemical properties, antioxidant activity and shelf stability of carrot (Daucus carota) and pineapple (Ananas comosus) juice blend. International Food Research Journal, 24(2), 534-540. http://agris.upm.edu.my:8080/dspace/handle/0/15903

Palacio, Natalia (2020). Cadena de valor sostenible para zanahorias (Daucus carota) imperfectas en Cundinamarca, Colombia. Recuperado de: http://hdl.handle.net/10726/2512

Platel, Kalpana; Srinivasan, Krishnapura (2016). Bioavailability of micronutrients from plant foods: an update. Critical reviews in food science and nutrition, 56(10), 1608-1619. https://doi.org/10.1080/10408398.2013.781011

Purohit, Ashwini; Gogate, Parag (2015). Ultrasound-assisted extraction of β-carotene from waste carrot residue: effect of operating parameters and type of ultrasonic irradiation. Separation Science and Technology, 50(10), 1507-1517. https://doi.org/10.1080/01496395.2014.978472

Raees, Haq; Prasad, K. (2015). Nutritional and processing aspects of carrot (Daucus carota)-A review. South Asian Journal of Food Technology and Environment, 1(1), 1-14.

Rutkowska, Małgorzata; Namieśnik, Jacek; Konieczka, Piotr (2017). Chapter 10 - Ultrasound-Assisted Extraction. In: F. Pena; M. Tobiszewski (Eds.), The Application of Green Solvents in Separation Processes (pp. 301-324). Elsevier. https://doi.org/10.1016/B978-0-12-805297-6.00010-3

Sagar, Narashans; Pareek, Sunil; Sharma, Sunil; Yahia, Elhadi; Lobo, Maria (2018). Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531. https://doi.org/10.1111/1541-4337.12330

Saini, Ramesh; Keum, Young (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90-103. https://doi.org/10.1016/j.foodchem.2017.07.099

Sarungallo, Zita; Hariyadi, Purwiyatno; Andarwulan, Nuri; Purnomo, Eko; Wada, Mitsuhiro (2015). Analysis of α-Cryptoxanthin, β-Cryptoxanthin, α -Carotene, and β-Carotene of Pandanus Conoideus Oil by High-performance Liquid Chromatography (HPLC). Procedia Food Science, 3, 231-243. https://doi.org/10.1016/j.profoo.2015.01.026

Selvamuthukumaran, M.; Shi, John (2017). Recent advances in extraction of antioxidants from plant by-products processing industries. Food Quality and Safety, 1(1), 61-81. https://doi.org/10.1093/fqsafe/fyx004

Sharmin, Tajnuba; Ahmed, Neaj; Hossain, Abul; Hosain, Mojaffor; Mondal, Shakti; Haque, Raihanul; Almas, Mohammed; Siddik, Abu (2016). Extraction of bioactive compound from some fruits and vegetables (pomegranate peel, carrot and tomato). American Journal of Food and Nutrition, 4(1), 8-19.

Singh, Aasti; Ahmad, Sayeed; Ahmad, Anees (2015). Green extraction methods and environmental applications of carotenoids-a review. RSC advances, 5 (77), 62358-62393. https://doi.org/10.1039/C5RA10243J

Sun, Mei; Temelli, Feral (2006). Supercritical carbon dioxide extraction of carotenoids from carrot using canola oil as a continuous co-solvent. The Journal of supercritical fluids, 37(3), 397-408. https://doi.org/10.1016/j.supflu.2006.01.008

Tiwari, Brijesh (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100-109. https://doi.org/10.1016/j.trac.2015.04.013

Tiwari, Swati; Upadhyay, Neelam; Singh, Ashish; Meena, Ganga; Arora, Sumit (2019). Organic solvent-free extraction of carotenoids from carrot bio-waste and its physico-chemical properties. Journal of food science and technology, 56(10), 4678-4687.

Tsiaka, Thalia; Sinanoglou, Vassilia; Zoumpoulakis, Panagiotis (2017). Chapter 8 - Extracting Bioactive Compounds From Natural Sources Using Green High-Energy Approaches: Trends and Opportunities in Lab- and Large-Scale Applications. In: A. Grumezescu; A. Holban (Eds.), Ingredients Extraction by Physicochemical Methods in Food, 307-365. Academic Press. https://doi.org/10.1016/B978-0-12-811521-3.00008-9

Underwriters, L. (2020). Beta-Carotene Oil Solutions. Recuperado de: https://www.ulprospector.com/en/la

Varón, Edinson; Li, Ying; Balcells, Merce; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne; Chemat, Farid (2017). Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. Molecules, 22(9), 1474. https://doi.org/10.3390/molecules22091474

Varón, Edinson; Selka, A.; Fabiano-Tixier, Anne; Balcells, Merce; Canela-Garayoa, Ramon; Bily, Antoine; Touaibia, M.; Chemat, Farid (2016). Solvent from forestry biomass. Pinane a stable terpene derived from pine tree byproducts to substitute n-hexane for the extraction of bioactive compounds. Green Chemistry, 18(24), 6596-6608. https://doi.org/10.1039/C6GC02191C

Vasconcelos, Mirele; de Oliveira, Luciana; Nunes-Pinheiro, Diana; da Silva, Francisco; de Sousa, Felipe; de Siqueira, Luciana; Cardoso, Andréia; Goebel, Tamiris; Sanches, Ana; Nabavi, Seyed; de Melo, Dirce (2020). Chapter 12 - Analysis of tetraterpenes and tetraterpenoids (carotenoids). In: A. Sanches; S. Nabavi; M. Saeedi; S. Nabavi (Eds.), Recent Advances in Natural Products Analysis (pp. 427-456). Elsevier. https://doi.org/10.1016/B978-0-12-816455-6.00012-3

Vernès, Léa; Vian, Maryline; Chemat, Farid (2020). Chapter 12 - Ultrasound and Microwave as Green Tools for Solid-Liquid Extraction. In: C. Poole (Ed.), Liquid-Phase Extraction (pp. 355-374). Elsevier. https://doi.org/10.1016/B978-0-12-816911-7.00012-8

Vinatoru, M.; Mason, T.; Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry, 97, 159-178. https://doi.org/10.1016/j.trac.2017.09.002

Wang, Lin; Xu, Baoguo; Wei, Benxi; Zeng, Rong (2018). Low frequency ultrasound pretreatment of carrot slices: Effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrasonics Sonochemistry, 40, 619-628. https://doi.org/10.1016/j.ultsonch.2017.08.005

Wen, Chaoting; Zhang, Jixian; Zhang, Haihui; Dzah, Courage; Zandile, Manyakara; Duan, Yuqing; Ma, Haile; Luo, Xiaoping (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops–A review. Ultrasonics Sonochemistry, 48, 538-549. https://doi.org/10.1016/j.ultsonch.2018.07.018

Zhao, Qiaojiao; Zhang, Weiwei; Wu, Yanwen; Ouyang, Jie (2015). Extraction Techniques and Stability of Carotenoprotein from Carrot (Daucus carota L.) Root. Journal of Food Process Engineering, 38(3), 290-298. https://doi.org/10.1111/jfpe.12134

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2020 Servicio Nacional de Aprendizaje SENA

Descargas

Los datos de descargas todavía no están disponibles.