Modeling drying kinetics of Peruvian yellow potatoes (Solanum gonyocalix)

  • Gabriela Cristina Chire Fajardo Universidad Nacional Agraria La Molina
  • Rocio Alicia Valdivia Arrunategui Universidad Nacional Agraria La Molina
  • Walter Francisco Salas Valerio Universidad Nacional Agraria La Molina

Resumen

The aim of this research was to model drying kinetics of potatoes (Solanum gonyocalix), variety Amarilla Tumbay, using a tunnel dryer.  Potatoes slices of 0,5 cm thickness were used in a drying experiment at different temperatures (60, 70 and 80°C) and air speed (4,9, 6,7 and 8,3 m/s). The equipment used allowed recording of the sample gross mass at real time. A factorial design in CRD with two repetitions was used, to determine significant differences between levels the LSD method was used. The results show two drying speeds (a very short constant one and a decreasing one).  For the marked decreasing speed, which could be modeled by Fick´s law of diffusion, the used equations were adequate for a proper description of the process. Temperature dependence of moisture diffusion was of the Arrhenius equation type (R2 = 0.995): moisture diffusion and activation energy were Do = 0,81x10-9 m2/s and Ea = 4,81 kJ/mol respectively.

Biografía del autor/a

Gabriela Cristina Chire Fajardo, Universidad Nacional Agraria La Molina
PhD. en NutriciónMSc. Ciencia de los AlimentosEsp. en Gestión de Calidad Total y ProductividadIng. en Industrias AlimentariasDocente Investigador
Rocio Alicia Valdivia Arrunategui, Universidad Nacional Agraria La Molina
MSc. en Tecnología de AlimentosIng. en Industria de AlimentosDocente Investigador
Walter Francisco Salas Valerio, Universidad Nacional Agraria La Molina
MSc. of Science in Agricultural EngineeringIng. de Alimentos

Referencias

Aghbashlo, M., Hossien Kianmehr, M. & Arabhosseini, A. (2009). Modeling of thin-layer drying of potato slices in length of continuous band dryer. Energy conversion and management, 50, 1348-1355.

AOAC - Association of Official Agricultural Chemists. (2016). Official Methods of Analysis. 20th Edition, Volumen II. Editors: William Horwitz and George W. Latimer, Jr. Maryland, USA.

Barrena, M.A., Marcelo, J.L. y Gamarra, O.A. (2009). Cinética del secado de lúcuma (Pouteria lucuma L.). Aporte Santiaguino, 2(2), 271-281.

Benali, M. (2012). Drying of yellow pea starch on inert carriers: Drying kinetics, moisture diffusivity and product quality. Journal of Food Engineering, 110, 337-344. doi:10.1016/j.jfoodeng.2012.01.003.

Borah, A., Hazarika, K. & Khayer, S.M. (2015). Drying kinetics of whole and sliced tumeric rhizomes (Curcuma longa L.) in a solar conduction dryer. Information Processing in Agriculture, 2, 85-92.

Carranza, J. y Sánchez, M. (2002). Cinética de secado de Musa Paradisiaca L. plátano, y Manihot esculenta Grantz, yuca. Amazónica de Investigación Alimentaria, 2(1), 15-25.

Chouicha, S., Boubekri, A., Mennouche, D. & Berrbeuch, M.H. (2013). Solar drying of sliced potatoes, an experimental investigation. Energy Procedia, 36, 1276-1285. doi:10.1016/j.egypro.2013.07.144.

Crank, J. (1975). The mathematics of diffusion. Oxford, UK: Clarendon press.

Devahastin S. & Niamnuy C. (2010). Modeling quality changes of fruits and vegetables during drying: a review. International Journal of Food Science and Technology, 45, 1755-1767.

Egusquiza Bayona, R. (2014). La papa en el Perú. Lima: Universidad Nacional Agraria La Molina.

Gómez, R. & Roca, W. (2008). Native Potatoe of Peru. En Ministry of Agriculture (Ed.). p. 42.

Fan, K., Chen L., He J. & Yan F. (2015). Characterization of thin layer hot air drying of sweet potatoes (Ipomoea batatas L.) slices. Journal of Food Processing and Preservation, 39, 1361-1371.

Hatamipour, M.S., Hadji Kazemi, H., Nooralivand, A. & Nozarpoor, A. (2007). Drying characteristics of six varieties of sweet potatoes in diferente dryers. Trans IChemE, Part C, Food and Bioproducts Processing, 85(C3), 171-177.

Hii, C.L., Law, C.L. & Cloke, M. (2009). Modeling using a new thin layer drying model and product quality of cocoa. Journal of Food Engineering, 90, 191-198.

Kaleta, A. & Gornicki, K. (2010). Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. International Journal of Food Science and Technology, 45, 891-898.

López, A., Virseda, P. y Abril, J. (1995). Modelización de la cinética de secado de patata cortada en láminas. Alimentaria, 268, 43-48.

Maldonado, R.J. y Pacheco-Delahaye, E. (2003). Curvas de deshidratación del brócoli (Brassica oleracea L. var. Italica plenk) y coliflor (Brassica oleracea L. var. botrytis L). Revista Facultad de Agronomia (LUZ), 20, 306-319.

Onwunde, DI., Hashim N., Janius RB., Nawi NM. & Abdan K. (2016). Modeling the thin-layer drying of fruits and vegetables: a review. Comprehensive reviews in food science and food safety, 15, 599-618.

Olanipekun, BF., Tunde-Akintunde, TY., Oyelade, OJ., Adebis, MG. & Adenaya, TA. (2015). Mathematical modeling of thin-layer pineapple drying. Journal of food processing and preservation, 39, 1431-1441.

Vega, A., Andrés, A. y Fito, P. (2005). Modelado de la Cinética de secado del Pimiento Rojo (Capsicum nahum L. cv Lamuyo). Información Tecnológica, 16(6), 3-11.

Vega, A. y Lemus, R. (2006). Modelado de la Cinética de secado de la papaya chilena (Vasconcellea pubescens). Información Tecnológica, 17(3), 23-31.

Publicado
2017-05-09
Cómo citar
Chire Fajardo, G. C., Valdivia Arrunategui, R. A., & Salas Valerio, W. F. (2017). Modeling drying kinetics of Peruvian yellow potatoes (Solanum gonyocalix). Revista Colombiana De Investigaciones Agroindustriales, 4(1), 39-47. https://doi.org/10.23850/24220582.349