Extracto de *Piper aduncum* L. como controlador de la garrapata común *Rhipicephalus sanguineus*

Normin Soley Cabrera-Barreiro¹
Guillermo Alberto Yustes-Hoyos²

Resumen

Piper aduncum es una especie arbustiva umbrófila que se encuentra generalmente en suelos con elevado contenido de materia orgánica y humedad. De las hojas, tallos y fluorescencias se extrae aceite esencial con acción insecticida, fungicida y bactericida, y una amplia utilización en el sector agrario y medicinal. La presente investigación tuvo como objetivo elaborar un champú con extracto obtenido de la especie *Piper aduncum* o Matico - Cordoncillo como se conoce popularmente, como base para el tratamiento de la garrapata común *Rhipicephalus sanguineus* en especies caninas. Para ello se realizó un experimento en el que se evaluó la acción del producto elaborado sobre el porcentaje de mortalidad de hembras de *R. sanguineus* y un control. El champú se encuentra conformado por un tenso activo anfótero (Texapón 40 al 15%), un emoliente (Glicerina al 2%), un espesante (Coco amida al 4%), un preservante (Benoato de sodio al 0,5%), compuesto activo (Extracto de *Piper aduncum* al 50%) y excipientes (Agua al 29%). Los análisis estadísticos mostraron un efecto del producto elaborado sobre el porcentaje de mortalidad de las hembras a los 30 (P < 0,002) y 60 (P < 0,004) minutos de aplicado.

Palabras Claves: extracto, emoliente, tensoactivo anfótero, preservante, excipientes, compuesto activo
Abstract

Piper aduncum is an umbrófila shrub species that is usually found in soils with a high content of organic matter and moisture. From the leaves, stems and fluorescence, essential oil is extracted with insecticidal, fungicidal and bactericidal action, with a wide use in the agricultural and medicinal sector. The objective of this research was to produce an extract shampoo obtained from the species *Piper aduncum* or Matico - Cordoncillo as it is popularly known, as a base for the treatment of the common tick *Rhipicephalus sanguineus* in canine species. For this, an experiment was carried out in which the action of the product elaborated on the percentage of mortality of females of *R. sanguineus* and a control was evaluated. The shampoo is made up of a tense amphoteric active (Texapón 40 to 15%), an emollient (2% glycerin), a thickener (4% coco amide), a preservative (0.5% sodium benzoate), active compound (extract of *Piper aduncum* 50%) and excipients (29% water). The statistical analyzes showed an effect of the product elaborated on the percentage of mortality of the females at 30 (\(P < 0.002\)) and 60 (\(P < 0.004\)) minutes of applied.

Keywords: extract, emollient, amphoteric surfactant, preservative, excipients, active compound.

Introducción

Las garrapatas son ectoparásitos hematófagos obligados de los animales salvajes, domésticos y de los seres humanos, se clasifican en la subclase Acari, orden Parasitiformes, suborden Ixodida y están distribuidos desde el ártico a las regiones tropicales del mundo (Estrada et al., 2012), siendo más prevalente en las regiones tropicales y subtropicales (Gray et al., 2013).

Se estima que existen alrededor de 900 especies, encontradas prácticamente en todos los ecosistemas existentes (Socolovschi, 2009), como parásitos, las garrapatas poseen un potencial para provocar toxicosis, parálisis, irritación y alergia a sus hospedadores (Debárabora et al., 2011). Son importantes debido a que pueden actuar en el mantenimiento y transmisión de muchos microorganismos patógenos como bacterias, helmintos, protozoos y
virus que afectan tanto la salud animal como humana (Dantas-Torres et al., 2009).

Piper aduncum L. (*Piperaceae*) es conocido popularmente como falsojaborandi, apertaruño y/o cordoncillo, es un arbusto con propiedades medicinales nativo de América tropical y con amplia distribución. Es una planta umbrófila, encontrada en varias estructuras boscosas, especialmente en suelos con elevado contenido de materia orgánica y humedad (Lorenzi & Matos, 2002).

De sus hojas se extrae alto contenido de aceite esencial (1,8-2,2%), el cual es utilizado en la agricultura debido a su acción insecticida (Fazolin et al., 2005, Fazolin et al., 2007) y fungicida (Bastos & Albuquerque 2004, Navickiene et al., 2006). Además es utilizado en el tratamiento contra microorganismos patógenos para el ser humano (Fidalgo et al., 2004).

El objetivo de este trabajo fue elaborar un champú con extracto obtenido de la especie *Piper aduncum*, o Matico - Cordoncillo como se conoce popularmente, como base para el tratamiento de la garrapata común *Rhipicephalus sanguineus*, en especies a través de su aplicación, eliminando la plaga presente en la especie canina y previniendo la propagación de enfermedades a otras especies animales.

Materiales y métodos

Material vegetal: Las muestras de *Piper aduncum* se obtuvieron en las inmediaciones del municipio de Gigante-Huila, posteriormente fueron llevadas en una bolsa aséptica al laboratorio de Química del Centro Agroempresarial y Desarrollo Pecuario del Huila.

Obtención de aceite esencial: El aceite esencial se determinó mediante el método de arrastre por vapor en un destilador, el cual se encuentra en el laboratorio de química del Centro Agroempresarial y Desarrollo Pecuario del Huila. Para ello se utilizaron 25 Kg del material vegetal (Hojas, tallo y fluorescencia) el cual fue previamente lavado con agua cruda y cortado en trozos de aproximadamente 20 cm de largo. Posteriormente fueron insertados en la máquina y después de 3 horas de realizado el destilado se obtuvo el aceite el cual fue recogido en recipientes plásticos y almacenados en un espacio sin presencia de luz.

Formulación del producto: El extracto obtenido se mezcló en diferentes proporciones para obtener un champú cuya fórmula se muestra en la Tabla 1. Se inició la mezcla añadiendo el benzoato de sodio y luego los demás ingredientes con agitación durante 15 min. Finalmente, el pH de la solución fue ajustado a 7.5.

Tabla 1. Composición del champú formulado con extracto de *Piper aduncum*

<table>
<thead>
<tr>
<th>Ingrediente</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>290 mL</td>
</tr>
<tr>
<td>Cocoamida</td>
<td>40 mL</td>
</tr>
<tr>
<td>Hidrolato de Cordoncillo</td>
<td>100 mL</td>
</tr>
<tr>
<td>Glicerina</td>
<td>20 mL</td>
</tr>
<tr>
<td>Lauril éter sulfato de sodio al 40%</td>
<td>150 mL</td>
</tr>
<tr>
<td>Benzoato de Sodio</td>
<td>5 gr</td>
</tr>
</tbody>
</table>
Recolección de *Rhipicephalus sanguineus*: Las garrapatas se obtuvieron directamente de caninos infectados y se mantuvieron en una incubadora en condiciones controladas (28 °C, 85% de humedad y 12-h de fotoperíodo) en el laboratorio básico de biotecnología del Centro de Formación.

Bioensayos: Grupos de 20 hembras de *Rhipicephalus sanguineus* se sumergieron en dos tratamientos: T1: Champú formulado con extracto de cordoncillo y T2: Agua destilada (Control) con tres réplicas cada uno. Cada grupo fue sumergido durante 60 minutos, según el protocolo establecido por Drummond *et al.*, (1973). Después de la inmersión, las garrapatas se secaron en papel absorbente, se colocaron en placas de petri etiquetadas y se cubrieron con una película de plástico perforada. La variable respuesta que se evaluó fue el porcentaje de mortalidad a los 30 y 60 minutos mediante la siguiente ecuación:

Tasa de mortalidad (%) = (N° final de hembras muertas × 100)/N° inicial hembras muestreadas.

Análisis estadístico: Para analizar los efectos de los tratamientos sobre el porcentaje de mortalidad se realizó un análisis de varianza (ANOVA) simple, verificando previamente los supuestos de normalidad (prueba de Kolmogorov-Smirnov) y homogeneidad de varianzas (prueba de Levene). Se utilizó la prueba de Tukey para comparar las medias entre los diferentes tratamientos, como prueba a posteriori luego de establecer diferencias significativas. El criterio de significancia fue P < 0,05. Los análisis estadísticos fueron realizados usando el programa SPSS 13.0.

Resultados

El porcentaje de mortalidad de la garrapata *R. sanguineus* en el T1 fue de 73,33 % a los 30 minutos de aplicado el producto y de 83,66 % a los 60 minutos. El porcentaje de mortalidad en el control fue de 12,66 % a los 30 minutos y de 31,66 % a los 60 minutos (Figura 1).

Los análisis estadísticos mostraron un efecto del champú sobre el porcentaje de mortalidad de la garrapata a los 30 minutos de aplicado (gl= 1, F= 170,4, P < 0,0002) y a los 60 minutos (gl= 1, F= 119,8, P < 0,0004).

![Figura 1](image-url). Porcentaje de mortalidad de hembras de garrapatas de la especie *R. sanguineus* sometido a dos tratamientos. T1: Champú formulado con extracto de cordoncillo y T2: Agua destilada (Control).
Discusión

Teniendo en cuenta la información descrita y también el hecho de que la garrapata de *R. sanguineus* se ha convertido en una plaga urbana de gran importancia, el presente estudio analizó la sensibilidad y la susceptibilidad de las hembras recogidas de *R. sanguineus* cuando son expuestas al champú elaborado con extracto de *Piper aduncum*, verificando la eficacia del extracto en el control de las hembras pertenecientes a esta importante especie.

La mortalidad de las larvas de *R. sanguineus* demostrada por el extracto de *P. aduncum* puede deberse principalmente al aceite esencial que contiene grandes cantidades de dillapiol, un fenilpropanoide con propiedades insecticidas reportadas por otros autores (Maia et al., 1998; Bhuiyan et al., 2001; Fazolin et al., 2005). El dillapiole ha sido descrito como el principal compuesto constituyente de aceite esencial de *P. aduncum* (Gottlieb et al., 1981, Pino et al., 2004; Rali et al., 2007).

El uso de productos botánicos para el control de garrapatas tiene una larga historia como un componente importante de la medicina tradicional en diferentes países, donde la mayoría de los agricultores de escasos recursos utilizan materiales vegetales para tratar ectoparásitos de animales.

El conocimiento tradicional sobre el uso de estas plantas se transfiere a través de generaciones sucesivas, especialmente en comunidades rurales. Sin embargo, el conocimiento sobre el uso de especies de plantas individuales varía entre localidades y la validación científica de sus usos puede aumentar el rango de especies de plantas disponibles para el control de garrapatas y reducir sustancialmente la carga sobre aquellas que están en riesgo de extinción (Nchu et al., 2012).

La composición del aceite esencial de *P. aduncum* varía de acuerdo al lugar de procedencia. En América, Sureste Asiático y Oceanía el componente mayoritario es el dillapiol (30 a 90%), en Bolivia el 1,8 cineol (40%), en Panamá el β -cariofileno y aromadendreno (12%). Aunque en el presente estudio no se determinó la composición química del aceite esencial, es muy probable que el *P. aduncum* que se desarrolla en Colombia tenga composición variable en comparación con otras regiones.

Hasta la fecha no existen ensayos de toxicidad realizados a *P. aduncum*, ni como extracto o como aceite esencial, por lo que es necesario conocer la composición química de este extracto para optimizar su posible uso.

Agradecimientos

Los autores agradecen al Centro Agroempresarial y Desarrollo Pecuario del Huila por el apoyo económico para la realización del ensayo y a la aprendiz Anyela Viviana Quila Rojas por el apoyo técnico.
Referencias Bibliográficas

