Resumen
Un pilar fundamental en el presente y el futuro próximo es la agrobiotecnología. La globalización, el desarrollo y las nuevas tecnologías juegan un papel importante en el mundo actual, pero están presentando a la sociedad una serie de retos que debemos afrontar. En este contexto, las discusiones en torno a las tecnologías digitales han ido cobrando protagonismo y se evidencian nuevos modelos de negocio y procesos inteligentes aplicados a la biotecnología. La presente revisión proporciona información básica sobre algunas de las principales contribuciones de la agrobiotecnología (AgBiotech).
Se vislumbran algunas de las principales oportunidades de las tecnologías digitales en el amplio campo de la agrobiotecnología que buscan satsfacer las necesidades en la productvidad de cultvos y alimentos para el bienestar humano, a través de la seguridad alimentaria. Además, en el cuidado de un planeta que requiere cada vez más práctcas que propendan por la sostenibilidad ambiental, y la viabilidad económica de los países.
Citas
Abdulwaheed, A. (2019). Benefits 0f Precision Agriculture in Nigeria. London Journal of Research in Science: Natural and Formal, 19(2), 29–34. https://journalspress.com/LJRS_Volume19/507_Benefits-of-Precision-Agriculture-in-Nigeria.pdf
Acquavia, M. A., Pascale, R., Martelli, G., Bondoni, M., & Bianco, G. (2021). Natural Polymeric Materials: A Solution to Plastic Pollution from the Agro-Food Sector. In Polymers (Vol. 13, Issue 1). https://doi.org/10.3390/polym13010158
Agarwal, G., Kudapa, H., Ramalingam, A., Choudhary, D., Sinha, P., Garg, V., Singh, V. K., Patil, G. B., Pandey, M. K., & Nguyen, H. T. (2020). Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Functional & Integrative Genomics, 20(6), 739–761.
Altman, A. (2019). Plant tissue culture and biotechnology: perspectives in the history and prospects of the International Association of Plant Biotechnology (IAPB). In Vitro Cellular and Developmental Biology - Plant, 55(5), 590–594. https://doi.org/10.1007/s11627-019-09982-6
Anand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. In Metabolites (Vol. 9, Issue 11). https://doi.org/10.3390/metabo9110258
Antonacci, A., Arduini, F., Moscone, D., Palleschi, G., & Scognamiglio, V. (2018). Nanostructured (Bio)sensors for smart agriculture. TrAC Trends in Analytical Chemistry, 98, 95–103. https://doi.org/https://doi.org/10.1016/j.trac.2017.10.022
Arduini, F., Cinti, S., Scognamiglio, V., Moscone, D., & Palleschi, G. (2017). How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. Analytica Chimica Acta, 959, 15–42. https://doi.org/https://doi.org/10.1016/j.aca.2016.12.035
Arifjanov, A., Apakhodjaeva, T., & Akmalov, S. (2019). Calculation of losses for transpiration in water reservoirs with using new computer technologies. 2019 International Conference on Information Science and Communications Technologies (ICISCT), 1–4. https://ieeexplore.ieee.org/document/9011883
Awada, L., Phillips, P. W. B., & Smyth, S. J. (2018). The adoption of automated phenotyping by plant breeders. Euphytica, 214(8), 148. https://doi.org/10.1007/s10681-018-2226-z
Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., & Aggoune, E.-H. M. (2019). Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access, (7), 129551–129583. https://ieeexplore.ieee.org/document/8784034
Barkha, S., & Bharti, S. (2016). Green Biotechnology and Scope of Genetically modified Crops: Facts and Prejudices. Indian Journal of Agriculture Business, 2(March), 1–11.
Barragán, A., De-Hoyos, A., Luna, K. A., & Virgilio, T. A. (2021). Supplementary materials on Agricultural Technology, Biofertilizers, Biopesticides and Compost. https://repositoriodigital.ipn.mx/bitstream/123456789/26382/1/Supplementary%20materials%20on%20Agricultural%20Technology.pdf
Benedetti, M., Vecchi, V., Barera, S., & Dall’Osto, L. (2018). Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microbial Cell Factories, 17(1), 173. https://doi.org/10.1186/s12934-018-1019-3
BensonHill. (2020). Benson Hill Inc. https://bensonhill.com/
Berman, T., & Schallmo, D. (2021). Digital Transformation of Business Models in the Israeli AgTech Landscape. ISPIM Conference Proceedings, 1–18.
Bongomin, O.,Ocen, G., Nganyi, E., Musinguzi, A., & Omara, T. (2020). Exponential disruptive technologies and the required skills of industry 4.0. Journal of Engineering, 1-17. https://doi.org/10.1155/2020/4280156
Cavallo, A., Ghezzi, A., & Guzmán, B. V. R. (2019). Driving internationalization through business model innovation: evidences from an AgTech company. Multinational Business Review, 28(2). https://www.emerald.com/insight/content/doi/10.1108/MBR-11-2018-0087/full/html
Cavallo, A., Ghezzi, A., & Ruales Guzmán, B. V. (2020). Driving internationalization through business model innovation: Evidences from an AgTech company. Multinational Business Review, 28(2), 201–220. https://doi.org/10.1108/MBR-11-2018-0087
Chattopadhyay, P., Banerjee, G., & Mukherjee, S. (2017). Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech, 7(1), 60. https://doi.org/10.1007/s13205-017-0717-6
Corteva. (2022). Corteva Agriscience. https://www.corteva.com/
Dahabieh, M. S., Bröring, S., & Maine, E. (2018). Overcoming barriers to innovation in food and agricultural biotechnology. Trends in Food Science & Technology, 79, 204–213. https://doi.org/https://doi.org/10.1016/j.tifs.2018.07.004
Dilawari, R., Kaur, N., Priyadarshi, N., Kumar, B., Abdelmotelb, K. F., Lal, S. K., Singh, B., Tripathi, A., Aggarwal, S. K., & Jat, B. S. (2021). Genome editing: a tool from the vault of science for engineering climate-resilient cereals. In Harsh Environment and Plant Resilience (pp. 45–72). Springer.
Foth, M., & McQueenie, J. (2019). Creatives in the country? Blockchain and agtech can create unexpected jobs in regional Australia. The Conversation, 1–5. https://theconversation.com/creatives-in-the-country-blockchain-and-agtech-can-create-unexpected-jobs-in-regional-australia-117017
Gabr, M. (2003). Biotechnology: Perspectives of civil society. Biotechnology and Sustainable Development: Voices of the South and North. https://books.google.com.co/bookshl=es&lr=&id=JgpLeje8T74C&oi=fnd&pg=PA221&dq=Biotechnology:+Perspectives+of+civil+society.&ots=jtf6_rxkbI&sig=f7CAzm_L8hT0bHposmb57ddb3-Q#v=onepage&q=Biotechnology%3A%20Perspectives%20of%20civil%20society.&f=false
Gahukar, R. T., & Das, R. K. (2020). Plant-derived nanopesticides for agricultural pest control: challenges and prospects. Nanotechnology for Environmental Engineering, 5(1), 3. https://doi.org/10.1007/s41204-020-0066-2
Ghoshal, G. (2018). Chapter 2 - Biotechnology in Food Processing and Preservation: An Overview. En A. M. Holban and A. M.
Grumezescu (Ed.), Advances in Biotechnology for Food Industry (pp. 27-54). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-811443-8.00002-5
González, A., Amarillo, G., Amarillo, M., y Sarmiento, F. (2016). Drones aplicados a la agricultura de precisión. Publicaciones e Investigación, 10, 23–37. https://hemeroteca.unad.edu.co/index.php/publicaciones-e-investigacion/article/view/1585
Haggag, W. M., Abouziena, H. F., Abd-El-Kreem, F., & El Habbasha, S. (2015). Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J. Chem. Pharm. Res, 7(10), 882–889. https://www.cabdirect.org/cabdirect/abstract/20153415617
Halder, M., Roychowdhury, D., & Jha, S. (2018). A Critical Review on Biotechnological Interventions for Production and Yield Enhancement of Secondary Metabolites in Hairy Root Cultures. En V. Srivastava, S. Mehrotra, & S. Mishra (Eds.), Hairy Roots: An Effective Tool of Plant Biotechnology (pp. 21–44). Springer Singapore. https://doi.org/10.1007/978-981-13-2562-5_2
Hernández-Rosas, F., Figueroa-Rodríguez, K. A., García-Pacheco, L. A., Velasco-Velasco, J., & Sangerman-Jarquín, D. M. (2020). Microorganisms and Biological Pest Control: An Analysis Based on a Bibliometric Review. In Agronomy (Vol. 10, Issue 11). https://doi.org/10.3390/agronomy10111808
Hussain, M., Farooq, S., Hasan, W., Ul-Allah, S., Tanveer, M., Farooq, M., & Nawaz, A. (2018). Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives. Agricultural Water Management, 201, 152–166. https://doi.org/https://doi.org/10.1016/j.agwat.2018.01.028
Ibarra, G. E. R. (2022). Agricultura de Precisión: La integración de las TIC en la producción Agrícola. Journal of Computer and Electronic Sciences: Theory and Applications, 3(1), 34–38. https://revistascientificas.cuc.edu.co/CESTA/article/view/3978
Islam, N., Rashid, M. M., Pasandideh, F., Ray, B., Moore, S., & Kadel, R. (2021). A review of applications and communication technologies for internet of things (Iot) and unmanned aerial vehicle (uav) based sustainable smart farming. Sustainability, 13(4), 1821. https://www.mdpi.com/2071-1050/13/4/1821
Jhala, J., Baloda, A. S., & Rajput, V. S. (2020). Role of bio-pesticides in recent trends of insect pest management: a review. Journal of Pharmacognosy and Phytochemistry, 9(1), 2237–2240. https://www.phytojournal.com/archives/2020/vol9issue1/PartAL/9-1-403-760.pdf
Kafarski, P. (2012). Rainbow code of biotechnology. Chemik, 66(8), 811–816. https://www.researchgate.net/publication/287253802_Rainbow_code_of_biotechnology
Kakani, V., Nguyen, V. H., Kumar, B. P., Kim, H., & Pasupuleti, V. R. (2020). A critical review on computer vision and artificial intelligence in food industry. Journal of Agriculture and Food Research, 2, 100033. https://pubag.nal.usda.gov/catalog/6916494
Kannan, M., Mubarakali, D., Thiyonila, B., Krishnan, M., Padmanaban, B., & Shantkriti, S. (2019). Insect gut as a bioresource for potential enzymes - an unexploited area for industrial biotechnology. Biocatalysis and Agricultural Biotechnology, 18, 101010. https://doi.org/https://doi.org/10.1016/j.bcab.2019.01.048
Kapazoglou, A., Ganopoulos, I., Tani, E., & Tsaftaris, A. (2018). Chapter Nine - Epigenetics, Epigenomics and Crop Improvement. In M. Kuntz (Ed.), Transgenic Plants and Beyond (Vol. 86, pp. 287–324). Academic Press. https://doi.org/https://doi.org/10.1016/bs.abr.2017.11.007
Kaushal, J., Mehandia, S., Singh, G., Raina, A., & Arya, S. K. (2018). Catalase enzyme: Application in bioremediation and food industry. Biocatalysis and Agricultural Biotechnology, 16, 192–199. https://doi.org/https://doi.org/10.1016/j.bcab.2018.07.035
Koch, N. (2019). AgTech in Arabia: “Spectacular forgetting” and the technopolitics of greening the desert. Journal of Political Ecology, 26(1), 666–686. https://doi.org/10.2458/V26I1.23507
Kumar, Sanjay, Sachdeva, S., Bhat, K. V, & Vats, S. (2018). Plant Responses to Drought Stress: Physiological, Biochemical and Molecular Basis. In S. Vats (Ed.), Biotic and Abiotic Stress Tolerance in Plants (pp. 1–25). Springer Singapore. https://doi.org/10.1007/978-981-10-9029-5_1
Kumar, S., Singh, A. K., & Mohapatra, T. (2017). Epigenetics: History, present status and future perspective. Indian Journal of Genetics and Plant Breeding, 77(4), 445–463. https://doi.org/10.5958/0975-6906.2017.00061.X
Lachman, J., López, A., Tinghitella, G., y Gómez-Roca, S. (2021). Las Agtech en Argentina: desarrollo reciente, situación actual y perspectivas. Universidad de Buenos Aires, Facultad de Ciencias Económicas. http://bibliotecadigital.econ.uba.ar/econ/collection/docin/document/docin_iiep_057
Legun, K., Burch, K. A., & Klerkx, L. (2022). Can a robot be an expert? The social meaning of skill and its expression through the prospect of autonomous AgTech. Agriculture and Human Values, 1–17. https://link.springer.com/content/pdf/10.1007/s10460-022-10388-1.pdf?pdf=button
Lenaerts, B., Collard, B. C. Y., & Demont, M. (2019). Review: Improving global food security through accelerated plant breeding. Plant Science, 287, 110207. https://doi.org/https://doi.org/10.1016/j.plantsci.2019.110207
Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2021). From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Transactions on Industrial Informatics, 17(6), 4322–4334. https://doi.org/10.1109/TII.2020.3003910
Malik, K. A., & Maqbool, A. (2020). Transgenic crops for biofortification. Frontiers in Sustainable Food Systems, 4, 571402. https://www.frontiersin.org/articles/10.3389/fsufs.2020.571402/full
Manda, R., Addanki, V., & Srivastava, S. (2020). Microbial bio-pesticides and botanicals as an alternative to synthetic pesticides in the sustainable agricultural production. Plant Cell Biotechnol. Mol. Biol, 21, 31–48.
Massabni, A. C., & da Silva, G. J. (2019). Biotechnology and Industry 4.0: The professionals of the future. International Journal of Advances in Medical Biotechnology-IJAMB, 2(2), 45–53. https://doi.org/10.25061/2595-3931/IJAMB/2019.v2i2.39
Meena, R. K., & Mishra, P. (2020). Bio-pesticides for agriculture and environment sustainability. Resources Use Efficiency in Agriculture (pp. 85–107). Springer. https://link.springer.com/chapter/10.1007/978-981-15-6953-1_3
Mekonnen, Y., Namuduri, S., Burton, L., Sarwat, A., & Bhansali, S. (2019). Machine learning techniques in wireless sensor network based precision agriculture. Journal of the Electrochemical Society, 167(3), 37522. https://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1053&context=ece_fac
Mimini, V., Sykacek, E., Syed, S. N. A., Holzweber, J., Hettegger, H., Fackler, K., Potthast, A., Mundigler, N., & Rosenau, T. (2019). Compatibility of kraft lignin, organosolv lignin and lignosulfonate with PLA in 3D printing. Journal of Wood Chemistry and Technology, 39(1), 14–30.
Moghissi, A. A., Pei, S., & Liu, Y. (2016). Golden rice: scientific, regulatory and public information processes of a genetically modified organism. Critical Reviews in Biotechnology, 36(3), 535–541. http://dx.doi.org/10.3109/07388551.2014.993586
Mohamed, E. S., Belal, A. A., Abd-Elmabod, S. K., El-Shirbeny, M. A., Gad, A., & Zahran, M. B. (2021). Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 971-981. https://www.sciencedirect.com/science/article/pii/S1110982321000582
Montoya, E. A. Q., Colorado, S. F. J., Muñoz, W. Y. C., & Golondrino, G. E. C. (2017). Propuesta de una arquitectura para agricultura de precisión soportada en IoT. Revista Ibérica de Sistemas e Tecnologias de Informação, 24, 39–56. https://dialnet.unirioja.es/servlet/articulo?codigo=6673698
Morawicki, R. O., & Díaz González, D. J. (2018). Food Sustainability in the Context of Human Behavior. The Yale Journal of Biology and Medicine, 91(2), 191–196. https://pubmed.ncbi.nlm.nih.gov/29955224
Morris, B. (2017). Ag Biotech Market Map: 245 Startups Using Biology & Chemistry to Revolutionize Agriculture. AgFunder. https://agfundernews.com/ag-biotech-market-map.html
Moshelion, M., & Altman, A. (2015). Current challenges and future perspectives of plant and agricultural biotechnology. Trends in Biotechnology, 33(6), 337–342. https://doi.org/https://doi.org/10.1016/j.tibtech.2015.03.001
Munir, M., Baumbach, S., Gu, Y., Dengel, A., & Ahmed, S. (2018). Data analytics: industrial perspective & solutions for streaming data. Data Mining in Time Series and Streaming Databases 83(pp. 144–168). World Scientific. https://doi.org/10.1142/9789813228047_0007
Niether, W., Jacobi, J., Blaser, W. J., Andres, C., & Armengot, L. (2020). Cocoa agroforestry systems versus monocultures: a multi-dimensional meta-analysis. Environmental Research Letters, 15(10), 104085. https://iopscience.iop.org/article/10.1088/1748-9326/abb053/meta
Nyerhovwo, J. T., & Douglason, G. O. (2010). Biotechnology and food security in developing countries. Biotechnology and Molecular Biology Reviews, 4(1), 13–23.
Ochoa, B. (2006). La lipidómica, una nueva herramienta al servicio de la salud. Gaceta Médica de Bilbao, 103(3), 101–102. https://www.elsevier.es/es-revista-gaceta-medica-bilbao-316-articulo-la-lipidomica-una-nueva-herramienta-S0304485806745346
Organizacion de las Naciones Unidas para la Salud [FAO]. (1992). Convenio sobre la Diversidad Biológica. https://observatoriop10.cepal.org/es/tratados/convenio-la-diversidad-biologica
Paul, M. J., Watson, A., & Griffiths, C. A. (2020). Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. Journal of Experimental Botany, 71(7), 2270–2280. https://doi.org/10.1093/jxb/erz480
Putra, R. P., Ranomahera, M. R. R., Rizaludin, M. S., Supriyanto, R., & Dewi, V. A. K. (2020). Short Communication: Investigating environmental impacts of long-term monoculture of sugarcane farming in Indonesia through DPSIR framework. Biodiversitas Journal of Biological Diversity, 21(10), 4945-4958. https://doi.org/10.13057/biodiv/d211061
Qaim, M. (2020). Role of New Plant Breeding Technologies for Food Security and Sustainable Agricultural Development. Applied Economic Perspectives and Policy, 42(2), 129–150. https://doi.org/https://doi.org/10.1002/aepp.13044
Rai, K. K., Aamir, M., Zehra, A., & Rai, A. C. (2021). Research Trends in Genetically Modified (GM) Plants. Policy Issues in Genetically Modified Crops, 453–480.
Rakhra, M., Deb, P., Dahiya, O., Chandel, S. S., Bhutta, B., Badotra, S., Kumar, S., Shaukat, A., & Singh, D. (2022). An Analytical Study of the Types of Implements used by Farmers in Mechanized Agriculture. 2022 International Mobile and Embedded Technology Conference (MECON), 683–687.
Raybould, A. (2021). Improving the politics of biotechnological innovations in food security and other sustainable development goals. Transgenic Research, 30(5), 613–618. https://link.springer.com/article/10.1007/s11248-021-00277-4
Reshetnikov, V. V, Smolskaya, S. V, Feoktistova, S. G., & Verkhusha, V. V. (2022). Optogenetic approaches in biotechnology and biomaterials. Trends in Biotechnology. https://doi.org/10.1016/j.tibtech.2021.12.007
Riat, A. K., & Kaur, A. (2019). An Alternative Approach to Synthetic Insecticides: Bio-Pesticides. Think India Journal, 22(17), 89–98. https://thinkindiaquarterly.org/index.php/think-india/article/download/12809/8081
Salaheen, S., & Biswas, D. (2019). Organic farming practices: Integrated culture versus monoculture. Safety and practice for organic food (pp. 23–32). Elsevier. https://www.elsevier.com/books/safety-and-practice-for-organic-food/biswas/978-0-12-812060-6
Sallam, A., Alqudah, A. M., Dawood, M. F. A., Baenziger, P. S., & Börner, A. (2019). Drought Stress Tolerance in Wheat and Barley: Advances in Physiology, Breeding and Genetics Research. International Journal of Molecular Sciences, 20(13). https://doi.org/10.3390/ijms20133137
Sharma, M., & Kaushik, P. (2021). Vegetable phytochemicals: An update on extraction and analysis techniques. Biocatalysis and Agricultural Biotechnology, 36, 102149. https://doi.org/https://doi.org/10.1016/j.bcab.2021.102149
Show, P. L., Chai, W. S., & Ling, T. C. (Eds.). (2022). Microalgae for Environmental Biotechnology: Smart Manufacturing and Industry 4.0 Applications. CRC Press. https://www.routledge.com/Microalgae-for-Environmental-Biotechnology-Smart-Manufacturing-and-Industry/Show-Chai-Ling/p/book/9781032064116
Ndhlala, A. R., & Pandey, A. K. (2020). Phytochemical, nutraceutical and pharmacological attributes of a functional crop Moringa oleifera Lam: An overview. South African Journal of Botany, 129, 209–220. https://doi.org/https://doi.org/10.1016/j.sajb.2019.06.017
Sowmiyaa, S., & Lavanya, S. M. (2020). Agtech vis-a-vis Blockchain. Biotica Research Today, 2(11), 1143–1144. https://www.researchgate.net/publication/350225122_Agtech_vis-a-vis_Blockchain
Srivastava, R. K. (2019). Bio-energy production by contribution of effective and suitable microbial system. Materials Science for Energy Technologies, 2(2), 308–318. https://doi.org/https://doi.org/10.1016/j.mset.2018.12.007
Srivastava, Vivek. (2019). CRISPR applications in plant genetic engineering and biotechnology. Plant Biotechnology: Progress in Genomic Era (pp. 429–459). Springer. https://www.semanticscholar.org/paper/CRISPR-Applications-in-Plant-Genetic-Engineering-Srivastava/b9c47a51dc27760f73a9f6d52af1576a106e689b
Szparaga, A., Kocira, S., & Kapusta, I. (2021). Identification of a biostimulating potential of an organic biomaterial based on the botanical extract from Arctium lappa L. roots. Materials, 14(17), 4920. https://www.mdpi.com/1996-1944/14/17/4920
Tardieu, F., Cabrera-Bosquet, L., Pridmore, T., & Bennett, M. (2017). Plant Phenomics, From Sensors to Knowledge. Current Biology, 27(15), R770–R783. https://doi.org/https://doi.org/10.1016/j.cub.2017.05.055
Tirnaz, S., & Batley, J. (2019). Epigenetics: Potentials and Challenges in Crop Breeding. Molecular Plant, 12(10), 1309–1311. https://doi.org/10.1016/j.molp.2019.09.006
USDA. (2022). Agricultural Biotechnology. In United States Departement of Agriculture. Foreing Agricultural Service.
Vaishnav, P., & Demain, A. L. (2009). Industrial Biotechnology, (overview). En M. Schaechter (Ed.), Encyclopedia of Microbiology (3 ed., pp. 335–348). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012373944-5.00150-4
Vallero, D. A. (2010). Environmental Risks of Biotechnologies: Economic Sector Perspectives. In D. A. B. T.-E. B. Vallero (Ed.), Environmental Biotechnology: A Biosystems Approach (pp. 443–490). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-375089-1.10009-1
Varotto, S., Tani, E., Abraham, E., Krugman, T., Kapazoglou, A., Melzer, R., Radanović, A., & Miladinović, D. (2020). Epigenetics: possible applications in climate-smart crop breeding. Journal of Experimental Botany, 71(17), 5223–5236. https://doi.org/10.1093/jxb/eraa188
Ventures, D. B. F. (2017). Digital farming attracts cash to agtech startups. Nature Biotechnology, 35(5), 397–398.
von Veltheim, F. R., & Heise, H. (2020). The AgTech Startup Perspective to Farmers Ex Ante Acceptance Process of Autonomous Field Robots. Sustainability, 12(24), 10570. https://doi.org/10.3390/su122410570
Waltz, E. (2017). Digital farming attracts cash to agtech startups. Nature Biotechnology, 35(5), 397–398. https://doi.org/10.1038/nbt0517-397
Wang, X., Lu, J., Fray, R., Grierson, G., Han, Y., & Chang, S. (2014). Plant genetic engineering and genetically modified crop breeding: history and current status. Frontiers of Agricultural Science and Engineering, 4(1), 5–27. https://journal.hep.com.cn/fase
Wu, F., Cao, L., Guo, S., & Zhang, J. (2020). Design and application of 3D path planning model of agricultural automatic robot. 2020 International Conference on Computer Information and Big Data Applications (CIBDA), 408–411.
Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International Journal of Production Research, 56(8), 2941–2962. https://doi.org/10.1080/00207543.2018.1444806
Yang, Y., & Hobbs, J. E. (2020). Supporters or opponents: will cultural values shape consumer acceptance of gene editing? Journal of Food Products Marketing, 26(1), 17–37. https://doi.org/10.1080/10454446.2020.1715316
Yu, L.P., Wu, F.Q., & Chen, G.Q. (2019). Next-Generation Industrial Biotechnology-Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnology Journal, 14(9), 1800437. https://doi.org/https://doi.org/10.1002/biot.201800437
Zimdahl, R. L. (2022). Agriculture’s ethical horizon. Elsevier. https://www.elsevier.com/books/agricultures-ethical-horizon/zimdahl/978-0-12-823667-3

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2022 Encuentro Sennova del Oriente Antioqueño