El efecto de la deshidratación de zanahorias sobre sus propiedades físico-químicas utilizando un proceso simultaneo de ósmosis y secado convectivo
PDF

Palabras clave

Tubérculo
Carotenos
Osmodeshidratación
Sólidos solubles
Aire caliente
Pérdida de agua.

Cómo citar

Salazar Beleño, A. M., Melo Guevara, J. M., Moreno Vides, P., Paz Díaz, H. J., & Velasco, E. (2019). El efecto de la deshidratación de zanahorias sobre sus propiedades físico-químicas utilizando un proceso simultaneo de ósmosis y secado convectivo. Revista Integra: Investigación Aplicada, Desarrollo Tecnológico E Innovación, 8, 36–58. Recuperado a partir de https://revistas.sena.edu.co/index.php/int/article/view/2043

Resumen

En este trabajo se modificaron las características naturales de la zanahoria (Daucus carota L.) aplicando de forma consecutiva procesos de deshidratación osmótica y secado por aire caliente. En particular, se estudió el efecto de una solución hipertónica de sacarosa concentrada a 50-60% p/p y una temperatura de secado de 60 oc, sobre las propiedades físicas y químicas del vegetal. Las muestras deshidratadas se analizaron comparativamente frente al alimento en fresco mediante la determinación de la humedad, actividad de agua, sólidos solubles,PH,porcentaje de acidez, color,resistencia a la compresión y contenido de carotenos. Se encontró que el proceso de deshidratación combinado promueve una reducción en el peso de la zanahoria mayor al 70%, actividad de agua por debajo de 0,4, acidez cercana al2% y sólidos solubles entre 28 y 35 o Bx, sin modificar significativamente el color natural del alimento ni su contenido de carotenos (aprox.60 mg/Kg).

PDF

Citas

Ahmed, 1., Qazi, I.M. & Jamal, S. (2016). Developments in osmotic dehydration technique for the preservation of fruits and vegeta bles. Innovative Food Science a nd Emerging Technologies.34:29-43.

ANSES (2012). Table CIQUAL, French Food Composition Tables, 381 http://www.afssa.fr/TableCIQUAL/

Arscott, S.A. & Tanumihardjo, S.A. (2010). Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Comprehensive Reviews in Food Science and Food Safety.9:223-239.

Bradley, R.J. (2010). Food Analysis. USA: Springer Science+Business Media,p.85-107.

Brad ley, R.J. (2010). Food Analysis. USA: Springer Science+Business Media,p.85-107.

Chou, S.K. & Chua, K.J. (2001). New hybrid drying technologies for heat sensitive foodstuffs. Trends in Food Science & Technology.12(10):359-369.

Della Rocca,P.A.,Rache,LA.& Mascheroni,R.H. (2013). Estudio de la transferencia de agua durante la deshidratación osmótica de zanahoria. Proyecciones.11(2):81-91.

Dixon,G.M.&Jen,j.J.(1977).Changesofsugar and acid in osmovac dried apple slices. Journal of Food Science.42:1126-1131.

Kiros,Seifu,Bultosa & Solomon.(2016).Effect of carrot juice and stabilizer on the physicochemicaland microbiologicalproperties of yogurt.LWT- Food Science and Technology. 69:191-196.

Knockaert G., De Roeck A., Lemmens L., Van Buggenhout S., Hendrickx M., & Van Loey A. (2011). Effect of thermal and high pressure processes on structural and health-related properties of carrots (Daucus carota). Food Chemistry,125:903-912.

Kowalski, S.j., Szadnziska, J. & techtanska, j. (2013). Non-stationary drying of carrot: Effect on product quality. journalof Food Engineering. 118:393-399.

Lerici, C.L., Pinnavaia, G., Dalla-Rosa, M. & Bartolucci, L. (1985). Osmotic dehydration of fruit: influence of osmotic agents on drying behaviour and product. journalof Food Science. 50:1217-1219.

Lewicki,P.P. (2006). Design of hot air drying for better foods. Trends in Food Science & Technology.17(4):153-163.

Mihoubi, D., Timoumi,S. & Zagrouba,F. (2009). Modelling of convective drying of carrot slices with IR heat source. ChemicalEngineering and Processing.48:808-815.

Nakagawa, K. & Ochiai, T. (2015). A mathematical model of multi-dimensional freeze-drying for food products. journalof Food Engineering.161:55-67.

Nanjundaswamy, A.M., Radhakrishnaiah, S.G., Balachandran, C., Saroja, S. & Murthy, R.K. (1978). Studies on development of new categories of dehydrated products from indigenous fruits.. Indian

Food Packer. 22: 91-93.

Pacheco-Angulo, H., Herman-Lara, E., García­ Alvarado, M.A. & Ruiz-López, 1.1. (2016). Mass transfer modeling in osmotic dehydration: Equilibrium characteristics and process dynamics undervariable solution concentration and convective boundary. Food and Bioproducts Processing.97:88-99.

Pascau. j. & Mateas, j.(2013).lmage processing with lmagej. Disponible en: http://imagej.nih.gov/ij/docs/index.html

Raoult-Wack, A.L. (1994). Advances in osmotic dehydration. Trends in Food Science & Technology.5:255-260.

Rastogi, N.K., Raghavarao, K. & Niranjan, K. (2014). Chapter 11: Recent Developments in Osmotic Dehydration. Emerging Technologies for Food Processing.181-212.

Revaskar,V.,Sharma,G.P.,Verma,R.C.,Jain,S.K. & Chahar, V.K. (2007). Drying behavior and energy requirement for dehydration of white onion slices. lnternational Journal of Food Engineering.3(5):1-16.

Redriguez-Amaya.(2001).A guide to carotenoid analysis in foods.ILSI PRESS. lnternationalLife Sciences lnstitute. One Thomas Circle, N.W. Washington,D.C.20005-5802.p.65.

Sadler, G.D. & Murphy, P.A. (2010). Food Analysis. USA: Springer Science+Business Media.p.219-230.

Sanz,J.C. & Gallego,R. (2001).Diccionario Akal elColor.Akal.p.600-650.

Sharma, K.D., Karki, S., Thakur, N.S. & Attri, S. (2012). Chemical composition, functional properties and processing of carrot- a review. journalof Food Science and Technology. 49(1):22-32.

Simal, S., Benedito,j.,Sanchez,E.S. & Rossello, C. (1998). Use of ultrasound to increase ass transport rates during osmotic dehydration. journalofFood Engineering.36:323-336.

Singh,B.,Panesar,P.S.,Nanda,V.& Kennedy,J.F. (2010). Optimization of osmotic dehydration process of carrot cubes in mixtures of sucrose and sodium chloride solutions. Food hemistry.

:590-600.

Singh, C., Sharma, H.K. & Sarkar, B.C. (2010). lnfluence of process conditions on the mass transfer during osmotic dehydration of coated forFood Processing.181-212.

Revaskar,V.,Sharma,G.P.,Verma,R.C.,Jain,S.K. & Chahar, V.K. (2007). Drying behavior and energy requirement for dehydration of white onion slices. lnternational Journal of Food Engineering.3(5):1-16.

Rodriguez-Amaya.(2001).A guide tocarotenoid analysis in foods.ILSI PRESS. lnternationalLife Sciences lnstitute. One Thomas Circle, N.W. Washington,D.C.20005-5802.p.65.

Sadler, G.D. & Murphy, P.A. (2010). Food Analysis. USA: Springer Science+Business Media.p.219-230.

Sanz,J.C. & Gallego,R.(2001).Diccionario Akal delColor.Akal.p.600-650.

Sharma, K.O., Karki, S., Thakur, N.S. & Attri, S. (2012). Chemical composition, functional properties and processing of carrot- a review. Journalof Food Science and Technology. 49(1):22-32.

Simal, S., Benedito,J.,Sanchez,E.S. & Rossello, C. (1998). Use of ultrasound to increase ass transport rates during osmotic dehydration. JournalofFood Engineering.36:323-336.

Singh,B.,Panesar,P.S.,Nanda,V.& Kennedy,J.F. (2010). Optimization of osmotic dehydration process of carrot cubes in mixtures of sucrose and sodium chloride solutions. Food hemistry.

:590-600.

Singh, C., Sharma, H.K. & Sarkar, B.C. (2010). lnfluence of process conditions on the mass transfer during osmotic dehydration of coated pineapple samples. journalof Food Processing and Preservation. 34:700-714.

Singh, P., Kulshrestha, K. & Kumar, S. (2013). Effect of storage on D-carotene content and microbialquality ofdehydrated carrot products. Food Bioscience.2:39-45.

Sutar, P.P. & Prasad,S. (2011). Optimization of osmotic dehydration of carrots under atmospheric and pulsed microwave vacuum conditions.Drying Technology.29:371-380.

Torregginni, D. (1993). Osmotic dehydration in fruits and vegetable processing. Food Research lnternational. 26:59-68.

Torres, J.D., Talens, P.,Carot, J.M., Chiralt,A. & Escriche, l. (2007). Volatile profile of mango (Mangifera indica L.), as affected by osmotic dehydration.Food Chemistry.101:219-228.

Vázquez-Vila, M.j., Chenlo-Romero, F., Moreira­ Martínez, R. & Pacios-Penelas, B. (2009). Dehydration kinetics of carrots (Daucus carota L.) in osmotic and air convective drying processes. Spanish Journal of Agricultural Research.7(4):869-875.

Vega-Mercado, H., Angora-Nieto, M.M. & Bartosa-Cánovas, G.V. (2001). Advanced in dehydration of food. Journal of Food Engineering.49:271-289.

Descargas

Los datos de descargas todavía no están disponibles.