Informador Técnico
ISSN: 2256-5035 (Electrónico)
ISSN: 0122-056X (Impreso)
Formato: Electrónico / Acceso Abierto
Frecuencia: Números Semestrales
Revisión por Pares: Doble Ciego
El peso creciente del sector del transporte en la demanda de energía pone de manifiesto la necesidad de emprender acciones para mejorar la eficiencia y desarrollar alternativas energéticas. Una gran parte de los materiales con alto contenido en celulosa son susceptibles de ser utilizados como materia prima para la producción de biocarburantes, se generan como residuos en los procesos productivos de los sectores agrícola, forestal e industrial. El residuo utilizado en este caso proviene de la especie de Pinus patula. La deslignificación es una etapa crucial previa a la obtención de bioetanol, al permitir acceder a la celulosa y lograr su transformación. En este trabajo se estudiaron las mejores condiciones para lograr la deslignificación del aserrín de Pinus patula cultivado en el departamento del Cauca, alcanzando las mejores condiciones de deslignificación al emplear hidróxido de sodio al 12%, un tiempo de reacción de 60 minutos y uso de malla 30 (600 μm), lo cual permitió obtener porcentajes de celulosa entre 63 y 72% y porcentajes de muestra hidrolizada entre 10 y el 15%.
Alegría, F., y Muñoz, A. (2004). Obtención de etanol a partir de aserrín de Pinus patula y Pinus oocarpa mediante hidrólisis básica y enzimática, y cuantificación por cromatografía de gases. (Trabajo de grado). Universidad del Cauca, Colombia.
Alkasrawi, M., Galbe, M., y Zacchi, G. (2002). Recirculation of process stream in fuel ethanol production from softwood based on simultaneous saccharification and fermentation. Biochemistry and Biotechnology, 98, 849-861. doi: https://doi.org/10.1385/ABAB:98-100:1-9:849
ASTM International. (1985). Standard Test Method for Acid-Insoluble Lignin in Wood (ASTM D-1106-84). Anual Book of standars. Vol. 04.09 Feb. (1985).
Camacho, F., Gonzales, P., Jiménez, J. M., y Moya, M. (1987). Influencia de las condiciones de pretratamiento con NaOH sobre la eficacia de la hidrólisis enzimática de la paja de trigo. Revista de agroquímica y tecnología de alimentos, 27(2), 231-236. (1987).
Chang, V.S., Nagwani, M., Kim, C.H., y Holtzapple, M.T. (2001). Oxidative lime pretreatment of high-lignin biomass: poplar wood and newspaper. Applied biochemistry and biotechnology, 94(1), 1-28. doi: https://doi.org/10.1385/ABAB:94:1:01
Cunningham R. E. (Ed.) y López G. D. (Ed.). (1994). Etanol de lignocelulósicos: tecnología y perspectivas. Servicio de publicación e intercambio científico, Campus Universitario Santiago de Compostela.
Díaz, A. (1986). Ciencia de la madera. Ciudad Habana, Cuba: Editorial ENPES.
Dowe, N y McMillan, J. (2000). SSF Experimental protocols: lignocelulosic Biomass Hydrolysis and Fermentation. National Renewable Energy Laboratory (NREL) Analytical Procedures.
Fengel, D. y G. Wegener. (1989). Wood, chemistry, ultrastructure, reactions. Nueva York: Walter de Gruyter Ed. p:90-115.
Gallo, J. A., Sarria-Villa, R., y Palta, J. (2012). Comparación de la producción resinera de dos especies de pino cultivadas en el municipio de Cajibio. Journal de Ciencia e Ingenierıa, 4(1), 37-42. Disponible en: http://jci.uniautonoma.edu.co/
Gallo, J., Sarria-Villa, R. (2013). Obtención de colofonia y trementina a partir de la resina de pino de la especie patula y posterior evaluación de los parámetros de calidad. Journal de Ciencia e Ingeniería, 5(1), 88-91. Recuperado de : http://jci.uniautonoma.edu.co/
Geddes, C.C., Peterson, J.J., Roslander, C., Zacchi, G., Mullinnix, M.T., Shanmugam, K.T., Ingram, L. O. (2010). Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresource technology, 101(6), 1851-1857. doi: https://doi.org/10.1016/j.biortech.2009.09.070
Hsu, T., Guo, G., Chen, W., y Hwang, W. (2010). Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource technology, 101(13), 4907-4913. doi: https://doi.org/10.1016/j.biortech.2009.10.009
Lima, S. (2000). Mejoramiento al ciclo de recuperación de soda cáustica en el pulpeo de bagazo. (Trabajo de grado). Universidad del Valle, Cali, Colombia.
Linde, M., Jakobsson, E. L, Galbe, M., y Zachhi, G. (2008). Steam pretreatment of dilute H2SO4 imperegnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass and bioenergy, 32(4), 326-332. doi: https://doi.org/10.1016/j.biombioe.2007.09.013
Liu, C. G., y Wyman, C. E. (2005). Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresource technology, 96(18), 1978-1985. doi: https://doi.org/10.1016/j.biortech.2005.01.012
Marcotullio, G., y Krisanti, E. (2011). Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl3 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues. Bioresource technology, 102(10), 5917-5923. doi: https://doi.org/10.1016/j. biortech.2011.02.092
McDonald, R.G. (1970). Pulp and paper manufacture. Vol. II, Chap. 4. New York: McGraw-Hill. Mojica, H.M., Peñaloza, L.F., y Retamoso, C. (1984). Hidrólisis enzimática de residuos celulósicos. Revista ION, 8(1). 99-111.
Moncada, J., Cardona, C. A., Higuita, J. C., Vélez, J.J., y López-Suárez, F. E. (2016). Wood residue (Pinus patula bark) as an alternative feedstock for producing ethanol and furfural in Colombia: experimental, technoeconomic and environmental assessments. Chemical Engineering Science 140, 309–318. doi: https://doi.org/10.1016/j.ces.2015.10.027
Mood, S. H., Golfeshan, A. H., Tabatabaei, M., Jouzani, G. S., Najafi, G. H., Gholami, M., y Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews. 27, 77-93. doi: https://doi.org/10.1016/j.rser.2013.06.033
Negro, M.J., Manzanares, P., Ballesteros, I., Oliva, J.M., Cabañas, A., Ballesteros, M. (2000). Producción de etanol-combustible a partir de biomasa lignocelulósica. V Congreso nacional del medio ambiente. Fundación CONAMA, Madrid, España. 7 p.
Saddler, J. N., Hogan, C., Chan, M. H., y Louis-Seize, G. (1982). Ethanol fermentation of enzymatically Hydrolysed pretreated wood fractions using Trichoderma cellulases, Zymomonas mobilis, and Saccharomyces cerevisiae. Canadian Journal of Microbiology, 28(12), 1311-1319.doi: https://doi.org/10.1139/m82-196
Sánchez, C y Clavijo, O. (1982). Estudio preliminar de la obtención de azúcares fermentables por ataque enzimático de residuos celulósicos. (Trabajo de grado). Universidad Nacional de Colombia, Facultad de ciencias, Bogotá, Colombia.
Sassner, P., Martensson, C., Galbe, M., y Zacchi, G. (2008). Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. m Bioresource Technology, 99(1), 137-145. doi: https://doi.org/10.1016/j. biortech.2006.11.039
Shi, J., Sharma-Shivappa, R. R, Chinn, M., y Howell, N. (2009). Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and bioenergy, 33(1), 88-96. doi: https://doi.org/10.1016/j.biombioe.2008.04.016
Singh, R., Shukla, A., Tiwari, S., y Srivastava, M. (2014). A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews. 32, 713-728. doi: https://doi.org/10.1016/j.rser.2014.01.051
Stenberg, K., Bollók, M., Réczey, K., Galbe, M.,y Zacchi, G. (2000). Effect of Substrate and Cellulase Concentration on Simultaneous Saccharification and Fermentation of Steam-Pretreated Softwood for Ethanol Production. Biotechnology and Bioengineering, 68(2), 204-210. doi: https://doi.org/10.1002/(SICI)1097- 0290(20000420)68:2<204::AID-BIT9>3.0.CO;2-4
Sucklin, J. (1990). Enzyme Chemistry Impact and Applications. Dordrecht: Springer Netherlands. doi: https://doi.org/10.1007/978-94-009-1832-0
Taherzadeh, M. J., y Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. n International journal of molecular sciences, 9(9), 1621-1651. doi: https://doi.org/10.3390/ijms9091621
Tarkov, H., y Feist, W.C. (1969). A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. Advances in Chemistry Series, (95), 197. doi: https://doi.org/10.1021/ba-1969-0095.ch012
Xu, Z., Wnag, Q., Jiang, Z., Yang, X., y Ji, Y. (2007). Enzymatic hydrolysis of pretreated soybean Straw. Biomass and Bioenergy, 31(2), 162–167. doi: https://doi.org/10.1016/j.biombioe.2006.06.015
Yang, B., y Wyman, C. E. (2008). Pretreatment: the key to unlocking low-cost cellulosic Etanol. Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy, 2(1), 26-40. doi: https://doi.org/10.1002/bbb.49
Zhang, Q., y Cai, W. (2008). Enzymatichydrolysisofalkali-pretreatedricestrawby Trichodermareesei ZM4-F3. Biomass and Bioenergy, 32(12), 1130–1135. doi: https://doi.org/10.1016/j.biombioe.2008.02.006
Zhang, R., Lu, X. B., Liu, Y., Wang, X., y Zhang, S. H. (2011). Kinetic study of dilute nitric acid treatment of corn stover at relatively high temperature. Chemical Engineering & Technology, 34(3), 409-414. doi: https://doi.org/10.1002/ceat.201000258
Zhu, J. Y., Pan, X. J., Wang, G. S., y Gleisner, R. (2009). Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresource Technology. 100, 2411–2418. doi: https://doi.org/10.1016/j.biortech.2008.10.057
Zilliox, C., y Debeire, P. (1998). Hydrolysis of wheat straw by a thermostable endoxylanase: adsorption and kinetic studies. Enzyme and Microbial technology, 22(1), 58-63. doi: https://doi.org/10.1016/S0141-0229(97)00105-1