Revisión del comportamiento biocompatible de biovidrio como material promisorio en la industria biomédica
PDF
HTML
PDF (English)
XML
XML (English)

Palabras clave

Biovidrio
Biocompatibilidad
Biomateriales
Materiales cerámicos
Bioactividad

Cómo citar

Mina Cordoba, A., & Lemos Delgado, A. C. (2015). Revisión del comportamiento biocompatible de biovidrio como material promisorio en la industria biomédica. Informador Técnico, 79(2), 179–187. https://doi.org/10.23850/22565035.162

Resumen

El presente artículo tiene como fin mostrar cómo el biovidrio ha sido parte fundamental en el desarrollo de las ciencias biomédicas a partir de la versatilidad en su aplicabilidad y sus usos. Esta revisión bibliográfica pretende mostrar cómo a través de la investigación interdisciplinar se han diseñado diferentes procesos para la obtención de materiales a partir de vidrios bioactivos; inicialmente se discutirá la importancia del desarrollo de los dispositivos biomédicos implantables, orientado al uso del vidrio bioactivo como material precursor y su impacto en la sociedad actual. Posteriormente se discutirá la pertinencia e importancia de la modificación superficial para mejorar las condiciones de trabajo y funcionalidad de los dispositivos biomédicos así como la obtención de recubrimientos de biovidrio por diferentes métodos de obtención; finalmente los autores plantean como posible manera de obtención de los recubrimientos el método de evaporación en vacío como posible respuesta a las dificultades encontradas por los otros métodos de deposición.
https://doi.org/10.23850/22565035.162
PDF
HTML
PDF (English)
XML
XML (English)

Citas

Abe, Y., Kokubo, T., Yamamuro, T. (1990). Apatite coating on ceramic metals and polymers utilizing a biological process. Rev. materials Science. Materials in Medicine. 1: 233-238.

https://doi.org/10.1007/BF00701082

Abella J. M, (Ed.) (2003). Láminas delgadas y recubrimientos preparación, propiedades y aplicaciones. Madrid, Espa-a: Editorial CSIC.

Altomare, L.; Bellucci, D.; Bolelli, G.; Bonferroni, B.; Cannillo, V.; De Nardo, L.; Gadow, R.; Killinger, A.; Lusvarghi, L.; Sola, A.; Stiegler, N.; (2011). Microstructure and in vitro behavior of 45S5 bioglass coatings deposited by high velocity suspension flame spraying (HVSFS). Rev. Mater. Sci, Mater. Med. 22 1303 - 1309.

https://doi.org/10.1007/s10856-011-4307-6

Andrews, A. I., (1961). Porcelain Enamel. The Preparation, Applications and Properties of Enamels. Mantova, Italia: Editorial Tipografía Commerciale.

Berbecaru, C.; Alexandru, H. V.; A.; Ianculescu, A.; Popescu A.; Socol, G.; Sima, F.; Mihailescu, I. (2009). Bioglass thin films for biomimetic implants. Rev. Applied Surface Science 255: 5476 - 5479.

https://doi.org/10.1016/j.apsusc.2008.08.020

Bravo, O. M.; Sierra, Acevedo, J. H.; Córdoba, M. E. (2014). Síntesis y caracterización de biorecubrimientos de biovidrio/Al2O3 Rev. Colombiana de Materiales 5, 224-230.

Brown, R. F.; Day, D. E.; Day, T. E.; Jung, S. Rahaman, M. N.; Fu, Q. (2007). Growth and Differentiation of Osteoblastic Cells on 13- 93 Bioactive Glass Fibers and Scaffolds. Acta Biomater 4(2):387-396.

https://doi.org/10.1016/j.actbio.2007.07.006

Castleman, L. S.; Motzkin, S. M.; Alicandri, F. P.; Bonawit Vl. (1976). Biocompatibility of nitinol alloy as an implant material, Rev. Biomed Mater, 10 (5): 695 - 731.

https://doi.org/10.1002/jbm.820100505

Ceh, O.; García-González L.; Morales-Hernández.; Espinosa-Beltran, F. J.; Oliva, A. I. (2002). Estudio de esfuerzos intrínsecos y dureza de recubrimientos de TiN/c-Si fabricados por la técnica de evaporación por arco eléctrico. Rev. Superficies y Vacío 14, 15-20.

Correa, R.; Monsalve, M.; López, E.; Bolívar, F.; Vargas, F.; Tatiana Ríos, T.; Mu-oz, A. (2013). Influencia de los parámetros de deposición en la porosidad y adherencia de recubrimientos de biovidrios del sistema 31SiO2-11P2O5-51CaO -7MgO elaborados mediante proyección térmica por combustión oxiacetilénica Rev. LatinAm. Metal. Mater., 33 (1).

De Aza, P.N. Luklinska, Z.B.(2003). Efecto de la microestructura sobre la bioactividad de dos materiales vitrocerámicos del sistema CaSiO3-ZrO2, Rev. Soc. Esp. Cerám.Vidrio, 42, (2), 101 - 106.

https://doi.org/10.3989/cyv.2003.v42.i2.648

Demirkiran, H.; Mohandas, A.; Dohi, M.; Fuentes, A.; Nguyen, K.; Aswath, P, (2010). Bioactivity and mineralization of hydroxyapatite with bioglass as sintering aid and bioceramics with Na3Ca6(PO4)5 and Ca5(PO4)2SiO4 in a silicate matrix, Rev. Materials Science and Engineering C 30. 263 - 272.

https://doi.org/10.1016/j.msec.2009.10.011

Donald, I. W.; Mallison, P. M.; Metcalfe, B. L.; Gerrard, L. A.; Fernie, J. A. (2011). Recent developments in the preparation, characterization and applications of glass- and glass-ceramicto- metal seals and coatings. Rev. Mater Sci 46:1975 - 2000

Enderle, J. D. (2005). Introduction to biomedical engineering. Connecticut, Estados Unidos: Editorial Academic press

FDA, (1995). Blue-Book Memorandum G95-1: FDAmodified Version of ISO-10993- Part 1, Biological Evolution of Medical Devices - Part I: Evaluation and Testing.

Fu, Q.; Rahaman, M. N.; Bal, B. S.; Huang, W.; Day, D. E. (2007a). Preparation and Bioactive Characteristics of a Porous 13-93 Glass, and Fabrication into the Articulating Surface of a Proximal Tibia. Biorned. Murev. Rrs. 82A, 222 - 229.

https://doi.org/10.1002/jbm.a.31156

Fu, Q.; Rahaman, M. N.; Brown, R. F.; Bal, B. S.; Day, D. E. (2007b). Fabrication of Macroporous Bioactive 13-93 Glass Scaffolds for Bone Tissue Engineering using a Polymer Foam Replication Technique, Acta Biornater, 82, 1854-1864.

García J. L.; Hernando de Larrarnendi, C.; Mu-oz, D.; Gastaminza, G. (2004). Immunoallergic reactions to materials used in Orthopedic Surgery and Traumatology. Rev. Patología del aparato locomotor de la Fundación Mapfre Medicina, 2 (2): 114-125.

Geringer, J.; Pellier, J.; Taylor, M.L.; Macdonald, D.D. (2013). Electrochemical Impedance Spectroscopy: Insights for fretting corrosion experiments. Rev Tribology International, 68: 67- 76.

https://doi.org/10.1016/j.triboint.2012.10.027

Gómez-Vega, J. M.; Saiz, E.; Tomsia, A. P. (1999), Glass-Based Coatings on Titanium Implant alloy, Rev. Biomed. Mater. Res., 46, 549-559.

https://doi.org/10.1002/(SICI)1097-4636(19990915)46:4<549::AID-JBM13>3.0.CO;2-M

Gross, V., Kinne, R., Schmitz, H. J. Y Struz, V. L. (1988). The Response of Bone to Surface Active Glass/Glass-Ceramics. CRC-Crit. Rev. Biocompatibility, 4, 2-15.

Guo, H.B.; Miao, X.; Chen, Y.; Cheang, P.; Khor, K.A. (2004). Characterization of hydroxyapatite - and bioglass- 316L fiber composites prepared by spark plasma sintering. Rev. Materials Letters 58. 304-307.

https://doi.org/10.1016/S0167-577X(03)00474-9

Habide, A.F.; Maeda, L.D.; Souza, R.C.; Barboza, M.J.R.; Daguano J.K.M.F.; Rogero, S.O.; Santos, C. (2009). Effect of bioglass additions on the sintering of Y-TZP bioceramics. Rev. Materials Science and Engineering, C 29, 1959 - 1964

https://doi.org/10.1016/j.msec.2009.03.006

Hench, L.L. (1998). Bioceramics. Rev. Am. Ceram. Soc. 8,1 1705-1728.

https://doi.org/10.1111/j.1151-2916.1998.tb02540.x

Hench, L.L. y Wilson, J. (1984), Bonding mechanism at the interface of ceramic prosthetic materials Rev. Surface Active Biomaterials Science. 226, 630 - 636.

Hench, L.L. y Wilson, J., (1996). Clinical Performance of Skeletal Prostheses. Londrés, Reino Unido: Editorial Springer Science - Business Media

Hench, L. L., (1991). Bioceramics: From Concept to Clinic, Rev. Am. Ceram. Soc., 74, 1487-1510.

https://doi.org/10.1111/j.1151-2916.1991.tb07132.x

Hench, L. L., (2005). Repair of Skeletal Tissues. Biomaterials, Artificial Organs and Tissue Engineering. Londrés, Reino Unido: Editorial Springer Science . Business Media

https://doi.org/10.1533/9781845690861.3.119

Hench, L.L.; Best, S. (2004). Ceramics, Glasses and Glass- Ceramics. En Ratner, B., Hoffman, A., Schoen, F., Lemons, J. (Ed.), Biomaterials Science: Materials in medicine (2da edición). Elsevier, 153 - 170.

Jones, J. R. (2005). Scaffolds for Tissue Engineering, en Biomaterials, Artificial Organs and Tissue Engineering, Eds. Hench, L. L. y Jones, J. R., Woodhead Pub. Ltd., Cambridge, England.

https://doi.org/10.1533/9781845690861.4.201

Lamers E. (2010). The influence of Nano scale topographical cues on initial osteoblast morphology and migration. Rev. European cells and materials, 20: 329-343.

https://doi.org/10.22203/eCM.v020a27

Lang, J. E., Whiddon, D. R., Smith E. L., Salyapongse, A. K. (2008). Use of ceramics in total hip replacement. Rev. Surg. Orthop. Adv., 17, 51 - 57.

Lee, K.; Choe, H. C.; Kim, B.-H.; Ko, Y. M. (2010). The biocompatibility of HA thin films deposition on anodized titanium alloys. Rev Surface and Coatings Technology, 205, S267-S270.

https://doi.org/10.1016/j.surfcoat.2010.08.015

Liu, X.; Chu, P. K.; Ding, C. (2010). Surface Nanofunctionalization of biomaterials, Rev. Materials Science and Engineering: R: Reports, 70 (3): 275-302.

https://doi.org/10.1016/j.mser.2010.06.013

Lockyer, M. W. G.; Holland, D.; Dupree, R. 1995. Investigation of the structure of some bioactive and related glasses. Rev. Non-Crys. Sal., 188, 207-219.

Lopez-Estebana S.; Saiza, E.; Fujinob, S.; Okuc, T.; Suganumac, K.; Tomsia, A.P. (2003), Bioactive glass coatings for orthopedic metallic implants. Rev of the European Ceramic Society. 23: 2921-2930.

https://doi.org/10.1016/S0955-2219(03)00303-0

Mattox, D. M. (1998) Handbook of Physical Vapor Deposition (PVD) Processing. New Jersey, Estados Unidos: Editorial Noyes Publications.

National Research Council, (1997). National materials advisory board newsletter.

Ng, B.S.; Annergren, I.; Soutar, A. M.; Khor, K. A.; Jarfors, A. E. W. (2005). Characterization of a duplex TiO2/CaP coating on Ti6Al4V for hard tissue replacement. Biomaterials, 26, (10): 1087-1095.

https://doi.org/10.1016/j.biomaterials.2004.04.022

Pourhashem S, Afshar A. (2014). Double layer bioglass-silica coatings on 316L stainless steel by sol-gel method. Ceramics International. 40 (1, Part A):993-1000.

https://doi.org/10.1016/j.ceramint.2013.06.096

Ratner, B., Hoffman, A., Schoen, F., Lemons, J. (Ed.). (2003). Biomaterials science: an introduction to materials in the medicine. Londres: Academic press

Shirtliff, V. J. Hench, L. L. (2003) bioactive materials for tissue engineering, regeneration and repair. Journal of materials science. 38 pp. 4697- 4707.

https://doi.org/10.1023/A:1027414700111

Sierra, J. H.; Bravo, O.M.; Pe-a, P.A.; Cordoba, M.E. (2015). Evaluación electroquímica de recubrimientos de biovidrio/Al2O3 soportados sobre acero inoxidable AISI 316L y su relación con el carácter bioactivo de las películas Rev. LatinAm. Metal. Mat, 35 (2).

Souto, R.A.; Laz, M.M.; Reis, R.L. (2003), electrochemical behavior of different preparations of plasmasprayed hydroxyapatite coatings on Ti6Al4V substrate. Rev. Biomaterials, 24 (23): 4213 - 4221.

https://doi.org/10.1016/S0142-9612(03)00362-4

Spencer, N. D.; Textor, M. (1998). Surface Modification, Surface Analysis, and Biomaterials. Recuperado de: http://www.textorgroup.ch/pdf/publications/journals/22/Spencer_MatDay_1998.pdf

Sue, J. A.; Troue, H. H. (1989).Influence of crystallographic orientation, residual strains, crystallite size and micro hardness on erosion in ZrN coating. Rev. Surf. Sci. Technol. 40, 421 - 434.

Surmenev, R.A. (2012), A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Rev. Surf. Coat. Technol. 206. 2035 - 2056.

https://doi.org/10.1016/j.surfcoat.2011.11.002

Tang, C. Y., Tsui, C. P., Janackovic, D. J., Uskokovic, P. S. (2006). Nano mechanical properties evaluation of bioactive glass coatings on titanium alloy substrate, Rev. Optoelectron. Adv. Mater. 8: 1194 - 1199.

Tiwari, S.K.; Mishra, T, Gunjan M.K.; Bhattacharyya, A.S.; Singh, T.B.; Singh, R. (2007) Corrosion degradation and prevention by surface modification of biometallic materials. Rev. Surface and Coatings Technology. 201 (16-17): 7582-7588.

https://doi.org/10.1016/j.surfcoat.2007.02.026

Vijayalakshmi, U.; Rajeswari, S. Development of Silica Glass Coatings on 316L SS and Evaluation of its Corrosion Resistance Behavior in Ringer's Solution. Rev. Metallurgical and Materials Transactions A, 2012; 43 (12): 4907-4919.

https://doi.org/10.1007/s11661-012-1283-5

Vörös, J., Wieland, M., Ruiz-Taylor, M., Textor, M. Y Brunnete, D. M. (2001). Characterization of Titanium Surfaces, en Titanium in Medicine: Materials Science, Surface Science, Engineering, Biological Responses and Medical Applications, Eds. Brunnete, D. M., Tengrall, P., Textor, M. y Thomsen, P., Springer-Verlag, Berlin

https://doi.org/10.1007/978-3-642-56486-4_5

Vossen, J. L. (Ed.), (1980). Thin Film porcesses. Princeton, New Jersey: Academic Press.

Wasa, K.; Haber, M.; Adach, I H. (2005). Thin Film Materials Technology: Sputtering of Compound Materials.

Williams, D. F. (ed), (1987) Definitions in Biomaterials: Proceedings of a Consensus. Conference of the European Society for Biomaterials.

Xu, C.; Su, P.; Chen, X.; Meng, Y.; Yu, W.; Xiang, A. P.; Wang, Y. (2011). Biocompatibility and osteogenesis of biomimetic Bioglass- Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Rev. Biomaterials, 32, (4): 1051-1058.

https://doi.org/10.1016/j.biomaterials.2010.09.068

Descargas

Los datos de descargas todavía no están disponibles.