Informador Técnico
ISSN: 2256-5035 (Electrónico)
ISSN: 0122-056X (Impreso)
Formato: Electrónico / Acceso Abierto
Frecuencia: Números Semestrales
Revisión por Pares: Doble Ciego
Resumen
En el artículo se realizó una comparación entre el pasado y el presente en el diagnóstico de los motores, iniciando con una breve reseña histórica del diagnóstico clásico de motores, fallos comunes en algunos de sus sistemas y detalle de los procedimientos diagnósticos del conjunto móvil del motor. Todo ello, como antecedente y contraposición con las técnicas actuales modernas que se basan en el análisis de la información provista por las herramientas de diagnóstico de bordo y por las señales de los sensores del tren de potencia. El trabajo realizado busca actualizar y extender la mirada sobre la práctica del diagnóstico automotor, con el propósito de ilustrar la utilización de los procedimientos modernos, en especial para los técnicos de servicio, algunos parámetros de operación del motor de un vehículo son registrados para un recorrido de conducción en ciudad, para posteriormente graficar y analizar algunos mapas de operación y comportamientos de la dinámica de tracción del vehículo que pueden obtenerse a través de la información obtenida por el sistema On Board Diagnostics II system (OBD II).
Abukhalil, Tamer; AlMahafzah, Harbi; Alksasbeh, Malek; Alqaralleh, Bassam (2020). Fuel Consumption Using OBD-II and Support Vector Machine Model. Hindawi Journal of Robotics, 2020. 10.1155/2020/9450178.
Achour, H.; Olabi, A. (2016). Driving cycle developments and their impacts on energy consumption of transportation. Journal of Cleaner Production, 112, 1778–1788. https://doi.org/10.1016/j.jclepro.2015.08.007
Agencia de Protección Animal (2015). Onboard Diagnostics (OBD). Washington, DC, USA: USEPA
Ahmed, N.; Morris, Phillip; Kapadia, Jimmy; Kok, Daniel (2019). Wheel Power in Urban and Extra-Urban Driving for xEV Design. SAE international, https://doi.org/10.4271/2019-01-1080
Alessandrini, A.; Filippi, F.; Orecchini, F.; Ortenzi, F. (2006). A new method for collecting vehicle behaviour in daily use for energy and environmental analysis. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(11), 1527-1537. https://doi.org/10.1243/09544070JAUTO165
Amarasinghe, Malintha; Kottegoda, Sasikala; Arachchi, Asiri; Muramudalige, Shashika; Bandara, Dilum, Azeez, Afkham (2015). Cloud-based driver monitoring and vehicle diagnostic with OBD2 telematics. In IEEE International Conference on Electro/Information Technology (EIT), (pp. 505-510). Illinois, USA. 10.1109/EIT.2015.7293433
Baby, Jaime; Uribe, Juan (2015). Análisis competitivo por parte de los talleres de servicio automotriz, mediante el uso del valor percibido por el cliente. AD-minister, (26), 73–99. 10.17230/ad-minister.26.4.
Barreto, Henry (2020). Pasado y presente del sector automotor en Colombia: balance de ANDI y Fenalco, Bogotá, Colombia. Recuperado de: https://www.f1latam.com/autos/noticias/sector-automotor-colombia-balance-andi-fenalco-2020-4830
Barreto, Victor (2017). What is OBD II? History of on-board diagnostics. Recuperado de: https://www.geotab.com/blog/obd-ii/
Bifulco, Gennaro; Galante, Francesco; Pariota, Luigi; Spena, María (2015). A Linear Model for the Estimation of Fuel Consumption and the Impact Evaluation of Advanced Driving Assistance Systems. Sustainability, 7(10), 14326-14343. https://doi.org/10.3390/su71014326
Bishop, Justin; Stettler, Marc; Molden, N.; Boies, Adam (2016). Engine maps of fuel use and emissions from transient driving cycles. Applied Energy, 183, 202-217. https://doi.org/10.1016/j.apenergy.2016.08.175
Bosch, Robert (2018). Bosch Automotive Handbook, 10th edition. SAE international.
Breitschwerdt, Dirk; Cornet, Andreas; Kempf, Sebastian; Michor, Lukas; Schmidt, Martin (2017). The changing aftermarket game-and how automotive suppliers can benefit from arising opportunities. McKinsey & Company. https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-changing-aftermarket-game-and-how-automotive-suppliers-can-benefit-from-arising-opportunities#
California Air Resources Board (2005). California code regulations. Title 13, Section 1968.2. Recuperado de: https://ww3.arb.ca.gov/regact/obdii06/19682clean.pdf
Carley, Larry (2003). Scan Tool Diagnostics: Choosing a scan tool that's right for you. Recuperado de: https://www.aa1car.com/library/2003/ic10318.htm
Chen, Shi-Huang: Pan, Jeng-Shyang; Lu, Kaixuan (2015). Driving behavior analysis based on vehicle OBD information and AdaBoost algorithms. Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China.
CSS Electronics (2020). OBD2 Explained. Recuperado de: https://www.csselectronics.com/screen/page/simple-intro-obd2-explained
D’Agostino, M.; Naddeo, M.; Rizzo, G. (2014). Development and validation of a model to detect active gear via OBD data for a Through-The-Road Hybrid Electric Vehicle. IFAC Proceedings Volumes, 47(3), 6618-6623. https://doi.org/10.3182/20140824-6-ZA-1003.01166
Della Ragione, L.; Meccariello, G. (2016). Statistical approach to identify Naples city’s real driving cycle referring to the Worldwide harmonized Light duty Test Cycle (WLTC) framework. WIT Transactions on Ecology and The Environment, 210, 12. 10.2495/SDP160461.
Denton, Tom (2016). Advanced Automotive Fault Diagnosis. 4ta Edition. Burlington: Elsevier Butterworth-Heinemann.
Determann, Lothar; Perens, Bruce (2017) Open cars. Forthcoming, Berkeley Technology Law Journal, 32(2). http://dx.doi.org/10.2139/ssrn.2837598
Doebler, Rebecca; Carl, James; Romeo, Joe (2016). On Board Diagnostics OBD. Recuperado de: http://www.eecs.umich.edu/courses/eecs498- brehob/.../OBDPresentax
Duarte, G.; Gonçalves, G.; Farias, T. (2016). Analysis of fuel consumption and pollutant emissions of regulated and alternative driving cycles based on real-world measurements. Transportation Research Part D: Transport and Environment, 44, 43–54. https://doi.org/10.1016/j.trd.2016.02.009
ELM Electronics (2015). On Board Diagnostics (OBD) ICs. Recuperado de: http://elmelectronics.com/DSheets/ELM327DS.pdf
European Automobile Manufacturers Association (2016). Access to vehicle data for third-party services. Recuperado de: https://www.acea.be/uploads/publications/ACEA_Position_Paper_Access_to_vehicle_data_for_third-party_services.pdf
Francfort, Jérémie (2016). Introduction to Vehicle Telematics, Data Handling and Reporting for Different Purposes and Data-Intense Projects. Recuperado de: https://avt.inl.gov/sites/default/files/pdf/dod/Session8_02-06-16Telematics.pdf
Giannelli, R.; Nam, E.; Helmer, K.; Younglove, T.; Scora, G.; Barth, M. (2005). Heavy-Duty Diesel Vehicle Fuel Consumption Modeling Based on Road Load and Power Train Parameters. SAE international, 16. https://doi.org/10.4271/2005-01-3549.
Gillespie, Thomas (1992). Fundamentals of Vehicle Dynamics. SAE International, https://www.sae.org/publications/books/content/r-114/
Guardiola, Carlos; Dolz, Vicente; Pla, Benjamín; Reig, Alberto (2016). Análisis del funcionamiento del motor y de la efciencia de conduccion mediante el uso de sistemas GPS y OBD. Modelling in Science Education and Learning, 9(2). 10.4995/msel.2016.4594.
Günther, R.; Wenzel, T.; Wegner, M.; Rettig, R. (2017). Big data driven dynamic driving cycle development for busses in urban public transportation. Transportation Research Part D: Transport and Environment, 51, 276–289. https://doi.org/10.1016/j.trd.2017.01.009
Hossain, Mohammed; Zahid, Arnob; Hoque, Rubaya (2017). Improvement of Service Quality at Automobile Workshop in Bangladesh. ICBM 2017 - 1st International Conference on Business & Management. Dhaka, Bangladesh.
Ipad. (2020). myAudi (version 3.22.0) [Aplicación móvil]. Descargado de: https://apps.apple.com/us/app/myaudi/id440464115.
Kim, Hwa-seon; Jang, Seong-jin; Jang, Jong-wook (2015). A Study on Development of Engine Fault Diagnostic System. Mathematical Problems in Engineering, 2015. http://dx.doi.org/10.1155/2015/271374
Kirthika, V.; Vecraraghavatr, A. (2018). Design and Development of Flexible On-Board Diagnostics and Mobile Communication for Internet of Vehicles. 2018 International Conference on Computer, Communication, and Signal Processing (ICCCSP), (pp.57-62). Chennai, India. doi:10.1109/icccsp.2018.8452826.
Lanigan, Patrick; Kavulya, Soila; Narasimhan, Priya; Fuhrman, Thomas; Salman, Mutasim (2011). Diagnosis in Automotive Systems: A Survey. Pittsburgh: Parallel Data Laboratory, Carnegie Mellon University.
Malekian, Reza; Moloisane, Ntefeng; Nair, Lakshmi; Maharaj, B.; Chude-Okonkwo. Uche (2017). Design and implementation of a wireless OBD II fleet management system. IEEE Sensors Journal, 17(4), 1154–1164. 10.1109/JSEN.2016.2631542
Martens, Bertin; Mueller-Langer, Frank (2018). Access to digital car data and competition in aftersales services. Seville, Spain: European Commission.
McCarthy, M. (2015). On-Board Diagnostics (OBD) Requirements. Recuperado de: https://ww2.arb.ca.gov/sites/default/files/classic//msprog/onroad/cert/ldctp/altfuelwkshop2012obdii.pdf
McCarthy, M.; Seidl, M.; Mohan, S.; Hopkin, J.; Stevens, A.; Ognissanto, F. (2017). Access to In-vehicle Data and Resources. Brussels: European Commission.
McKinsey (2015). Competing for the connected customer: Perspectives on the opportunities created by car connectivity and automation, McKinsey & Company, Advanced Industries.
Meseguer, Javier; Calafate, Carlos; Cano, Juan; Manzoni, Pietro (2015). Assessing the Impact of Driving Behavior on Instantaneous Fuel Consumption. 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), (pp. 443-448). Las Vegas, NV, USA. 10.1109/CCNC.2015.7158016.
Organización Internacional de Normalización (1994). Road vehicles — Diagnostic systems — Part 2: CARB requirements for interchange of digital information (ISO 9141-2). https://www.iso.org/obp/ui/#iso:std:iso:9141:-2:ed-1:v1:en
Organización Internacional de Normalización (2016). Road vehicles — Diagnostic communication over Controller Area Network (DoCAN) — Part 4: Requirements for emissions-related systems (ISO 15765-4). https://www.iso.org/obp/ui/#iso:std:iso:15765:-4:ed-3:v1:en
Organización Internacional de Normalización (2016). Road vehicles — Diagnostic communication over Controller Area Network (DoCAN) — Part 2: Transport protocol and network layer services (ISO 15765-2). https://www.iso.org/obp/ui/#iso:std:iso:15765:-2:ed-3:v1:en
Organización Internacional de Normalización (2016). Road vehicles — Diagnostic systems — Keyword Protocol 2000 — Part 4: Requirements for emission-related systems (ISO 14230-4). https://www.iso.org/obp/ui/#iso:std:iso:14230:-4:ed-1:v1:en
Preda, Ion; Covaciu, Dinu; Ciolan, Gheorghe; Dima, Dragoş-Sorin (2008). Vehicle Dynamic Behaviour Analysis Based on GPS Data. Recuperado de: http://aspeckt.unitbv.ro/jspui/bitstream/123456789/105/1/SMAT-2008xx1_Ion_Preda.pdf
Presoto de Oliveira, Leonardo; Wehrmeister, Marco; de Oliveira, André (2017). Systematic Literature Review on Automotive Diagnostics. VII Brazilian Symposium on Computing Systems Engineering (pp. 1-8), Curitiba, Brazil. 10.1109/SBESC43116.2017
Preston, Benjamin (2018). Automotive Service Departments Are Scrambling for Technicians. Car and Driver. Recuperado de: https://www.caranddriver.com/features/a19556986.
Rimpas, Dimitrios; Papadakis, Andreas; Samarakou, Maria (2020). OBD-II sensor diagnostics for monitoring vehicle operation and consumption. Energy Reports, 6(3), 55-63. https://doi.org/10.1016/j.egyr.2019.10.018
Rizzoni, Giorgio; Onori, Simona; Rubagotti, Matteo (2009). Diagnosis and Prognosis of Automotive Systems: motivations, history and some results. IFAC Proceedings Volumes, 42(8), 191-202. https://doi.org/10.3182/20090630-4-ES-2003.00032
Romero, Carlos; Díaz, Alexander; Lagos, Eduardo (2002). Diagnóstico de servicio de los motores a gasolina. Scientia et Technica, 18.
Romero, Carlos; Mejía, Luz; Acosta, Ricardo (2017). Engine data collection and development of a pilot driving cycle for Pereira city by using low cost diagnostic tools. Ingeniería y Competitividad, 19(2), 11–24. http://dx.doi.org/10.25100/iyc.v19i2.5287
Sadiku, Matthew; Tembely, Mahamadou; Musa, Sarhan (2018). Internet of Vehicles: An Introduction. International Journal of Advanced Research in Computer Science and Software Engineering, 8(1), 11-13.
Santa, José; Sánchez-Iborra, Ramon; Rodriguez-Rey, Pablo; Bernal-Escobedo, Luis; Skarmeta, Antonio (2019). LPWAN-Based Vehicular Monitoring Platform with a Generic IP Network Interface. Sensors, 19(2), 264. https://doi.org/10.3390/s19020264
Scott, Washburn; Frey, Christopher; Rouphail, Nagui (2017). On-Board-Diagnostics (OBD) Data Integration into Traffic Microsimulation for Vehicle Specific Fuel Use & Emissions Modeling & InVehicle App Testing. Florida, EE.UU.: Southeastern Transportation Research, Innovation, Development and Education (STRIDE).
Shaw, Samuel; Hou, Yunfei; Zhong, Weida; Sun, Qingquan; Guan, Tong; Su, Lu (2019). Instantaneous Fuel Consumption Estimation Using Smartphones. IEEE 90th Vehicular Technology Conference (VTC2019-Fall), (pp. 1-6). Honolulu, HI, USA. 10.1109/vtcfall.2019.8891261
Shen, Xuemin; Fantacci, Romano; Chen, Shanzhi (2020). Internet of Vehicles [Scanning the Issue]. Proceedings of the IEEE, 108(2), 242–245. 10.1109/JPROC.2020.2964107
Sik, David; Balogh, Tamas; Ekler, Peter; Lengyel, Laszlo (2016). Comparing OBD and CAN Sampling on the go with the SensorHUB Framework. Procedia Engineering, 168, 39-42. https://doi.org/10.1016/j.proeng.2016.11.133
Steckelberg, Danilo; Pacifico, Antonio (2015). A methodology for measuring an internal combustion engine performance map using on-board acquisition. 23rd ABCM International Congress of Mechanical Engineering, Rio de Janeiro, Brazil, 10.13140/RG.2.1.1932.8086.
Szalay, Zsolt; Kanya, Zoltán; Lengyel, László; Ekler, Péter; Ujj, Tamás; Balogh, Tamás; Charaf, Hassan (2015). ICT in road vehicles — Reliable vehicle sensor information from OBD versus CAN. International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), (pp. 469 – 476). Budapest, Hungary. doi:10.1109/mtits.2015.7223296.
Tsiakmakisa, Stefanos; Fontarasa, Georgios; Anagnostopoulosa, Konstantinos; Ciuffoa, Biagio; Pavlovic, Jelica; Marotta, Alessandro (2017). A simulation based approach for quantifying CO2 emissions of light duty vehicle fleets. A case study on WLTP introduction. Transportation Research Procedia, 25, 3898–3908. https://doi.org/10.1016/j.trpro.2017.05.308
Türker, Gül; Kutlu, A. (2016). Survey of Smartphone applications based on OBD-II for Intelligent Transportation Systems. Int. Journal of Engineering Research and Applications, 6(1), 69-73.
Wu, W.; Yang, Z.; Li, K. (2016). Internet of Vehicles and applications. In: Buyya, Rajkumar; Dastjerdi, Amir (Eds.) Internet of Things (pp. 299–317). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-805395-9.00016-2
Zheng, Xuan; Lu, Sheng; Yang, Liuhanzi; Yan, Min; Xu, Guangyi; Wu, Xiaomeng; Fu, Lixin; Wu, Ye (2020). Real-world fuel consumption of light-duty passenger vehicles using on-board diagnostic (OBD) systems. Frontiers of Environmental Science & Engineering, 14(2), 33. https://doi.org/10.1007/s11783-019-1212-6
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2020 Servicio Nacional de Aprendizaje SENA