Caracterización de escoria de cobre secundaria y evaluación de su actividad puzolánica
XML
PDF

Palabras clave

pozzolanic
industrial waste
waste management
cementitious matrix mortars
resistance activity index puzolana
residuo industrial
aprovechamiento de residuos
morteros de matriz cementicia
índice de actividad por resistencia

Cómo citar

Diaz-Rosero, Y., González-Salcedo, L. ., & Diaz Rosero, J. (2020). Caracterización de escoria de cobre secundaria y evaluación de su actividad puzolánica. Informador Técnico, 84(2), 192–201. https://doi.org/10.23850/22565035.2696

Resumen

El presente estudio se centró en la caracterización de una escoria de cobre secundaria (ECS) generada por una empresa ubicada en la región del Valle del Cauca, Colombia, para su posible uso como adición en el proceso de producción de cemento. Se realizó un análisis de distribución de tamaño de partícula (DTP), caracterización química (FRX), caracterización mineralógica (DRX) y, finalmente, se evaluó la actividad puzolánica de la escoria de cobre secundaria fina (ECF) utilizando el método establecido en la norma ASTM C 311, por medio del índice de actividad por resistencia (IAR). Se encontró que la ECF cumple con las condiciones químicas para clasificarse como puzolana y con las condiciones de resistencia, de acuerdo a las normas ASTM C618 y ASTM C311, respectivamente, con un IAR de 67,37 % a 7 días y 78,56 % a 28 días. Se encontró también, que los principales componentes mineralógicos de la ECF son leucita y piroxeno, y que el porcentaje de fase vítrea de la escoria es 45,8 %, con estos resultados se hace posible la utilización de este residuo en procesos de fabricación de materiales cementantes.

https://doi.org/10.23850/22565035.2696
XML
PDF

Citas

ASTM International (2017). Standard Specification for coal fly Ash and Raw or Calcined Natural Pozzlan for Use in Concrete (ASTM C618-17). West Conshohocken, PA.

ASTM International (2017). Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete (ASTM C311-17). West Conshohocken, PA.

ASTM International (2008). Historical Standard: Especificación Normalizada de Desempeño para Cemento Hidráulico (ASTM C1157-08). West Conshohocken, PA.

Carrasco, Pedro (2017). Propuesta de reciclaje de la escoria de cobre de la fundición ventanas de CODELCO, para mitigar el impacto ambiental (tesis de pregrado). Universidad Técnica Federico Santa Maria, Chile.

Edwin, Romy; Gruyaert, Elke; De Belie Nele (2017). Influence of intensive vacuum mixing and heat treatment on compressive strength and microstructure of reactive powder concrete incorporating secondary copper slag as supplementary cementitious material. Construction and building materials, 155, 400-412. https://doi.org/10.1016/j.conbuildmat.2017.08.036

Feng, Yan; Yang, Qixing; Chen, Qiusong; Kero, Jakob; Andersson, Anton; Ahmed, Hesham; Engstrom, Fredrik; Samuelsson, Caisa (2019). Characterization and evaluation of the pozzolanic activity of granulated copper slag modified with CaO. Journal of cleaner production, 232, 1112-1120. https://doi.org/10.1016/j.jclepro.2019.06.062

Francois, Eliese; Gazeli, Odhisea; Couris, Stelios; Angelopoulos, George; Blanpain, Bart; Malfliet, Annelies (2020). Laser-induced breakdown spectroscopy analysis of the free Surface of liquid secondary copper slag. Spectrochimica Acta Part B. Atomic Spectroscopy, 170, 105921. https://doi.org/10.1016/j.sab.2020.105921

Gorai, Bipra; Premchand, Jana (2003). Characteristics and utilization of copper slag- a review. Resources Conservation and Recycling. 39, 299-313. https://doi.org/10.1016/S0921-3449(02)00171-4

International Copper Study Group (2015). The World Copper Factbook 2015. Lisbon, Portugal: International Copper Study Group.

Kern, Arnt; Madsen, Ian; Scarlett, Nicola (2012). Quantifying amorphous phases. En: Kolb, U.; Shankland, K.; Meshi, L.; Avilov, A.; David, W. (Eds.), Uniting Electron Crystallography and Powder Diffraction (pp. 219-232). Erice, Italy: Springer.

Mirhosseini, Seyed; Fadaee, Mostafa; Tabatabaei, Ramin; Fadaee, Mohammad (2017). Mechanical properties of concrete with Sarcheshmeh mineral complex copper slag as a part of cementitious materials. Construction and Building Materials, 134, 44–49. https://doi.org/10.1016/j.conbuildmat.2016.12.024

Nazer, Amin; Pavez Osvaldo; Rojas, F; Aguilar C. (2010). Una revisión de los usos de las escorias de cobre. En: Congreso Iberoamericano de Metalurgia y Materiales. Viña del Mar, Chile. (pp. 2-5). 10.13140/2.1.3740.0328

Orizola, Sebastián. (2006). Uso de escoria de cobre en cementos (tesis de pregrado). Universidad de Chile, Santiago de Chile.

Oyarzún, Iván (2013) “Influencia de las escorias de cobre en la fabricación de hormigón” (tesis de pregrado). Universidad Austral de Chile, Valdivia, Chile.

Potysz, Anna; Kierczak, Jakub; Pietranik, Anna; Kadziolka, Katarzyna (2018). Mineralogical, geochemical, and leaching study of historical Cu-slags issued from processing of the Zechstein formation (Old Copper Basin, southwestern Poland). Applied Geochemistry, 98, 22-35. https://doi.org/10.1016/j.apgeochem.2018.08.027

Rojas, F. (2004). Estudio de prefactibilidad técnica del uso de la escoria de cobre en materiales de construcción (tesis de pregrado). Universidad de Atacama, Chile.

Edwin, Romy; De Schepper, Mieke; Gruyaert, Elke; De Belie, Nele (2016). Effect of secondary copper slag as cementitious material in ultra-high performance mortar. Construction and building materials, 119, 31-44. http://dx.doi.org/10.1016/j.conbuildmat.2016.05.007

Rozendaal, Abraham; Horn, Richard (2013). Textural, mineralogical and chemical characteristics of copper reverb furnace smelter slag of the Okiep Copper District, South Africa. Minerals Engineering, 52, 184-190. https://doi.org/10.1016/j.mineng.2013.06.020

Sharma, Rahul; Khan, Rizwan (2017). Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials. Journal of Cleaner Production, 151, 179–192. https://doi.org/10.1016/j.jclepro.2017.03.031

Shi, Caijun; Meyer, Christian; Behnood, Ali (2008). Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 52(10), 1115-1120. https://doi.org/10.1016/j.resconrec.2008.06.008

Silva, Yimmy; Gordillo, Marisol; Delvasto, Silvio (2017). Influencia del residuo de mampostería (RM) como material cementicio suplementario en la elaboración de morteros. Informador Técnico, 81(1), 44-54. https://doi.org/10.23850/22565035.719

Singh, Jagmeet; Singh, Surinder (2019). Development of Alkali-activated Cementitious Material using Copper Slag. Construction and Building Materials, 211, 73–79. https://doi.org/10.1016/j.conbuildmat.2019.03.233

Tixier, Raphaë; Devaguptapu, R; Mobasher, Barzin (1997). The effect of copper slag on the hydration and mechanical properties of cementitious mixtures. Cement and Concrete Research, 27(10), 1569-1580. https://doi.org/10.1016/S0008-8846(97)00166-X

Wang, X; Geysen D; Padilla, Silvia; D'Hoker, N; Van Gerven, T; Blanpain, B (2015). Characterization of copper slag in view of metal recovery, Miner Process. Ext. Metall. 124 (2) 83–87. https://doi.org/10.1179/1743285515Y.0000000004

Zain, Muhammad; Islam, M; Radin, Salihuddin; Yap, S. (2004). Cement-based solidification for the safe disposal of blasted copper slag. Cement and Concrete Composites, 26(7), 845-851. https://doi.org/10.1016/j.cemconcomp.2003.08.002

Descargas

Los datos de descargas todavía no están disponibles.