Tableros de partículas de polvillo de aserrín reforzados con subproductos reciclados (TAR)
PDF
XML

Palabras clave

Particle boards
sawdust
industrial waste
melamine resin
urea formaldehyde resin
tensile strength
modulus of rupture
composite Tableros aglomerados de partículas
aserrín
residuos industriales
resina melamínica
resina urea-formaldehído
resistencia a la tracción
módulo de ruptura

material compuesto.

Cómo citar

Buitrago, B., Henao, Ángela P., Ayala, O., & Mejìa, P. (2012). Tableros de partículas de polvillo de aserrín reforzados con subproductos reciclados (TAR). Informador Técnico, 76, 84. https://doi.org/10.23850/22565035.32

Resumen

El propósito del presente estudio es investigar el comportamiento mecánico
y físico de tableros aglomerados, compuestos por polvillo de aserrín y resinas
melamínica-urea formaldehído (MUF) en los que se introdujeron cargas de
materiales recuperados como caucho sintético, fibra de vidrio y fibra de yute.
Se estudiaron algunos parámetros como la relación molar M/UF, la resistencia
a la tracción, la resistencia a la flexión, la gravedad específica, la absorción de
humedad y el hinchamiento después de 2 y 24 horas de inmersión en agua. Los
resultados experimentales arrojaron valores máximos de resistencia a la tracción
y a la flexión de 10,9 MPa y de 48 MPa respectivamente, con una razón molar
M/UF de 1,5. La temperatura de trabajo fue de 150 °C y el tiempo estimado
por prensado fue de 150 s.
https://doi.org/10.23850/22565035.32
PDF
XML

Citas

Ashori A., Sheshmani S. Hybrid composites made from recycled materials: Moisture absorption and thickness swelling behavior, Bioresource Technology. 2010. 101, pp. 4717-4720.

https://doi.org/10.1016/j.biortech.2010.01.060

ASTM D1037–12 Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials.

ASTM D2395–07 Standard Test Methods for Specific Gravity of Wood and Wood-Based Materials.

ASTM D4442–07 Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials.

Bufalino L., Albino V., De Sá V., Corrêa R., MENDES L and ALMEIDA N. Particleboards made from australian red cedar: Processing variables and evaluation of mixedspecies, Journal of Tropical Forest Science. 2012. 24(2): 162-172.

CHEN H., LIU Z., CHEN J., and ZHANG Q. Optimum research of hot-pressing technology of the composite board with waste wood and paper. Advances in Natural Science. 2011. 4(2:147-151.

Ciannamea E., Stefani P, Ruseckaite R. Me- dium-density particleboards from modified rice husks and soybean protein concentrate-based adhe- sives, Bioresource Technology. 2010. 101, pp. 818-825.

https://doi.org/10.1016/j.biortech.2009.08.084

Debbaut B. Numerical simulation of elastic recovery for uncured rubber compound with a multi-mode Simhambhatla–Leonov model, Chemical Engineering Science. 2009. 64: 4580-4587.

https://doi.org/10.1016/j.ces.2009.01.033

De Souza, M.R., Geimer, R.L., Moslemi, A.A., 1997. Degradation of conventional and CO2-injected cement-bonded particleboard by exposure to fungi and termites. Journal of Tropical Products. 1997. Vol. 3 pp. 63-69.

Felton, C.C., Degroot, R.C., The recycling potential of preservative-treated wood. Forest Products Journal. 1996. 46: 37-46. .

Floresa J., Pastora J., Martinez A., Gimeno F., Frutosa M. Pressure Impact on Common Reed. Particleboards Manufacturing Procedure. Universidad Miguel Hernández, Alicante, Spain. 2011

Goldstein R., Ibele W., Patankar S, Simon T., Kuehn T., Strykowski P., Tamma K., Heberlein J., Davidson J., Bischof J., Kulacki F., Kortshagen U., Garrick S., Srinivasan V., Ghosh K., Mittal R., 2010. Heat transfer—A review of 2004 literature, International Journal of Heat and Mass Transfer. 2010. 53, pp. 4343-4396

https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.004

Guler C., Copur Y., Tascioglu C., 2008. The manufacture of particleboards using mixture of peanut hull (Arachis hypoqaea L.) and European Black pine (Pinus nigra Arnold) wood chips, Bioresource Technology. 2008 99. Pp. 2893-2897.

https://doi.org/10.1016/j.biortech.2007.06.013

Guo Q., Chen X., Liu H. Experimental research on shape and size distribution of biomass particle, Fuel. 2012. 94, 551-555.

https://doi.org/10.1016/j.fuel.2011.11.041

Gupta G., Yan N., and Martin W. Effects of pressing temperature and particle size on bark board properties made from beetle-infested lodgepole pine (pinus contorta) barks. Forest Products Journal. 2011. 61(6): 478-488.

https://doi.org/10.13073/0015-7473-61.6.478

Gürü M., Tekeli S., İbilici I. Manufacturing of urea–formaldehyde-based composite particleboard from almond shell, Materials and amp; Design 2006. 27 pp. 1148-1151.

Huang, C., Cooper, P.A., Cement-bonded particleboards using CCA-treated wood removed from service. Forest Products Journal. 2000. 50 pp. 49–56.

Jarusombuti S., Bauchongkol P., Hiziroglu S., and Fueangvivat V. Properties of rubberwood medium-density fiberboard bonded with starch and urea-formaldehyde. Forest Products Journal. 2012. 62(1): 58-62.

https://doi.org/10.13073/FPJ-D-11-00114.1

Kanchanomai C., Thammaruechuc A. Effects of stress ratio on fatigue crack growth of thermoset epoxy resin, Polymer Degradation and Stability. 2009. 94, pp. 1772-1778.

https://doi.org/10.1016/j.polymdegradstab.2009.06.012

Kamdem, D.P., Munson, J.M. Reconstituted particleboards from old CCA preservative treated utility poles. AWPA Proceedings. 1996. 92, pp. 117-130.

Kartal, S.N., Clausen, C.A. Leachability and decay resistance of particleboard made from acid extracted and bioremediated CCA-treated wood. International Biodeterioration and Biodegradation. 2001. 47, pp. 183-191.

https://doi.org/10.1016/S0964-8305(01)00047-6

Nemli G. Factors affecting the production of E1 type particleboard. TurkishJournal of Agriculture and Forestry. 2002. 26, pp.31-6.

Lertsutthiwong P., Khunthon S., Siralertmukul K., Noomun K., Chandrkrachang S. 2008. New insulating particleboards prepared from mixture of solid wastes from tissue paper manufacturing and corn peel, Bioresource Technology. 2008 99, pp. 4841-4845.

https://doi.org/10.1016/j.biortech.2007.09.051

Lindner R., K R., & M J. A concept for assessing sustainability impacts of forestry-wood chains. European Journal of Forest Research. 2012 131(1): 7-19.

https://doi.org/10.1007/s10342-011-0483-7

Md A., Warren B., Masoud J., and Hashisho Z. Automotive wastes. Water Environment Research. 2001, 83(10): 1467-1487.

Nemli G., Öztürk I. Influences of some factors on the formaldehyde content of particleboard, Building and Environment. 2006, 41, pp. 770-774

https://doi.org/10.1016/j.buildenv.2005.03.016

Nikvash N., Kharazipour A., and Euring, M. Effects of wheat protein as a biological binder in the manufacture of particleboards using a mixture of canola, hemp, bagasse, and commercial wood. Forest Products Journal. 2012. 62(1): 49-57.

https://doi.org/10.13073/FPJ-D-11-00102.1

Okada K., Imase A., Isobe T., Nakajima A. Capillary rise properties of porous geopolymers prepared by an extrusion method using polylactic acid (PLA) fibers as the pore formers, Journal of the European Ceramic Society. 2011. 31 pp. 461-467.

https://doi.org/10.1016/j.jeurceramsoc.2010.10.035

Park B., Jeong H. Hydrolytic stability and crystallinity of cured urea–formaldehyde resin adhesives with different formaldehyde/urea mole ratios, International Journal of Adhesion and Adhesives. 2011. 31, pp. 524-529.

https://doi.org/10.1016/j.ijadhadh.2011.05.001

PERAZA SÁNCHEZ, F., PERAZA SÁNCHEZ, J., ARRIAGA MARTITEGUI, F. Tableros de madera de uso estructural 2004.

Schmidt, R., Marsh, J.J., Balatinecz, J.J., Cooper, P.A. Increased wood-cement compatibility of chromate-treated wood. Forest Products Journal. 1994. 44, pp.44-46.

Terzi E., Köse C., Büyüksari Ü., Avci E., Ayrilmiş N., Nami S. Evaluation of possible decay and termite resistance of particleboard containing waste tire rubber, International Biodeterioration & Biodegradation. 2009. 63, pp.806-809.

https://doi.org/10.1016/j.ibiod.2009.01.010

Valencia G., ASDRÚBAL. "Control y modificación de la estructura de los materiales", Seminario técnico I, Ingeniería de Materiales, U. de A. 1999.

Vick, C.B., Geimer, R.L., Wood, J.E., 1996. Flakeboards from recycled CCA-treated southern pine lumber. Forest Products Journal. 1996. 46, pp.89-91.

Yalinkilic, M.K., Imamura, Y., Takahashi, M., Kalaycioglu, H., Nemli, G., Demirci, Z.,Ozdemir, T. Biological, physical and mechanical properties of particleboard manufactured from waste tea leaves. International Biodeterioration and Biodegradation. 1998. 41, pp.75-84.

https://doi.org/10.1016/S0964-8305(98)80010-3

Yang, T.H., Lin, C.J., Wang, S.Y., Tsai, M.J. Characteristics of particleboard made from recycled wood-waste chips impregnated with phenol formaldehyde resin. Building and Environment. 2007 42 (1): 189-195.

https://doi.org/10.1016/j.buildenv.2005.08.028

Y S., and J Y. Properties of particleboard made from chili pepper stalks. Journal of Tropical Forest Science 2011. 23(4): 473-477.

Wang, D., Sun, X.S., 2002. Low density particleboard from wheat strawand corn pith. Industrial Crops and Products. 2002. 15, pp.47-50.

https://doi.org/10.1016/S0926-6690(01)00094-2

Wolfe, R.W., Gjinolli, A. Durability and strength of cement-bondedwood particle composites made from construction waste. Forest Products Journal 1999. 49, pp.24–31.

Descargas

Los datos de descargas todavía no están disponibles.