Adherencia y biocompatibilidad in vitro de recubrimientos de fosfato de calcio-titanio de calcio obtenidos por magnetrón sputtering para aplicaciones ortopédicas
PDF
XML English
HTML
PDF (English)
XML

Palabras clave

biomaterials
coatings
calcium titanate
calcium phosphate
magnetron sputtering
scratch test. biomateriales
recubrimientos
titanato de calcio
fosfato de calcio
magnetrón sputtering
ensayo de adherencia

Cómo citar

Esguerra Arce, J., Esguerra Arce, A., & Aguilar Castro, Y. (2016). Adherencia y biocompatibilidad in vitro de recubrimientos de fosfato de calcio-titanio de calcio obtenidos por magnetrón sputtering para aplicaciones ortopédicas. Informador Técnico, 80(1), 32–40. https://doi.org/10.23850/22565035.320

Resumen

La hidroxiapatita se ha usado como recubrimientos en vástagos de prótesis de cadera por muchos años. Sin embargo, se ha observado que estos recubrimientos se desprenden llevando a la pérdida de la prótesis, debido a que sus propiedades mecánicas no cumplen los requerimientos de la aplicación. Ya que el titanato de calcio se ha propuesto como recubrimiento para aplicaciones biomédicas, por la biocompatibilidad y osteoconductividad mostrada en ensayos in vitro, en este trabajo se midió el efecto de agregar titanato de calcio a recubrimientos de fosfatos de calcio, obtenidos mediantes magnetrón sputtering, en su adherencia y módulo elástico, los cuales se evaluaron mediante ensayo de rayado según norma ASTM C1624-05 y nanoindentación, de acuerdo a la norma ASTM E2546-07, respectivamente. La biocompatibilidad in vitro de los recubrimientos se evaluó mediante ensayos de genotoxicidad y hemólisis, según norma ASTM F748-06. El recubrimiento de 100% fosfato de calcio (CP) estuvo compuesto de una mezcla de fosfato tricálico y tetracálcico, al cual se le adicionó titanato de calcio (TC), mediante modificación de un blanco de Ca10(PO4)6(OH)2-2xOx□x, en porcentajes de 25, 50 y 75 en volumen. Para efectos comparativos, también se obtuvieron recubrimientos de 100% TC. Se encontró que la adherencia se incrementó al adicionar 25% de un material en el otro, y que fue máxima en el recubrimientos 50%-50%. Además, se encontró que los recubrimientos son no genotóxicos y , a lo sumo, levemente hemolíticos.

https://doi.org/10.23850/22565035.320
PDF
XML English
HTML
PDF (English)
XML

Citas

Andersen, M. R.; Petersen, M. M. (2015). Adaptive bone remodeling of the femoral bone after tumor resection arthroplasty with an uncemented proximally hydroxyapatitecoated stem. Journal of Clinical Densitometry, Article impress Available online 3 April.

ASTM C1624 – 05 (Reapproved 2010). (2005). Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing, West Conshohocken, PA, American Society for Testing and Materials.

ASTM E2546 – 07.(2007). Standard Practice for Instrumented Indentation Testing, West Conshohocken, PA, American Society for Testing and Materials.

ASTM F756-08.(2008). Standard Practice for Assessment of Hemolytic Properties of Materials, West Conshohocken, PA, American Society for Testing and Materials.

Bao, Q.; Chen, C.; Wang, D.; Ji, Q.; Lei, T. (2005). Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films. Applied Surface Science 252: 1538– 1544.

https://doi.org/10.1016/j.apsusc.2005.02.127

Bull, S. J.; Berasetegui, E. G. (2006). Capítulo 7: An overview of the potential of quantitative coating adhesion measurement by scratch testing. En S. K. Sinha, editor. Scratching of Materials and Applications. Tribology and Interface Engineering Series, 51. USA: Elsevier; 136- 165.

Candidato Jr., P. Sokolowski, P.; Pawlowski, L.; Denoirjean, A. (2015). Preliminary study of hydroxyapatite coatings synthesis using solution precursor plasma spraying. Surface & Coatings Technology, 277 : 242–250.

https://doi.org/10.1016/j.surfcoat.2015.07.046

Chandran, P.; Azzabi, M.; Miles, J.; Andrews, M.; Bradley, J.(2010). Furlong hydroxyapatitecoated hip prosthesis vs the Charnley cemented hip prosthesis. The Journal of Arthroplasty, 25: 52 – 57.

https://doi.org/10.1016/j.arth.2008.10.009

De-Jun, K.; Dan, L.; Yong-Zhong, W.; Chao- Zheng, Z. (2012). Mechanical properties of hydroxyapatite-zirconia coatings prepared by magnetron sputtering. Transactions of Nonferrous Metals Society of China, 22: 104-110.

https://doi.org/10.1016/S1003-6326(11)61147-3

Dinda, G. P.; Shin, J.; Mazumder, J. (2009). Pulsed laser deposition of hydroxyapatite thin films on Ti–6Al–4V: Effect of heat treatment on structure and properties. Acta Biomaterialia, 5: 1821–1830.

https://doi.org/10.1016/j.actbio.2009.01.027

Esguerra Arce, J.; Esguerra Arce, A.; Aguilar, Y.; Yate, L.; Moya, S.; Rincón, C.; Gutiérrez, O. (2016). Calcium phosphate-calcium titanate composite coatings for orthopedic applications, Ceramics International, 42: 10322-10331.

https://doi.org/10.1016/j.ceramint.2016.02.177

Grandia, G.; Heitz, C.; Dos Santos, L. A.; Silva, M. L.; Sant'ana Filho, M.; Miranda Pagnocelli, R.; Nascimento Silva, D. (2011). Comparative histomorphometric analysis between α-TCP cement and β-TCP/HA granules in the bone repair of rat calvaria. Materials Research, 14(1): 11-16.

https://doi.org/10.1590/S1516-14392011005000020

Goyenvallea, E.; Aguad, E.; Nguyen, J. M.; Passuti, N.; Guehennec, L. L.; Layrolle, P.; Daculsi, G. (2006).Osteointegration of femoral stem prostheses with a bilayered calcium phosphate coating. Biomaterials 27: 1119– 1128.

https://doi.org/10.1016/j.biomaterials.2005.07.039

Harle, J.; Kim, H. W.; Mordan, N.; Knowles, J. C.; Salih, V. (2006). Initial responses of human osteoblasts to sol–gel modified titanium with hydroxyapatite and titania composition. Acta Biomaterialia, 2: 547–556.

https://doi.org/10.1016/j.actbio.2006.05.005

Holmberg, K.; Laukkanen, A.; Ronkainen, H.; Wallin, K.; Varjus, S. A. (2003). Model for stresses, crack generation and fracture toughness calculation in scratched TiN-coated steel surfaces. Wear 254: 278–291

https://doi.org/10.1016/S0043-1648(02)00297-1

Hong, Z.; Luan, L.; Paik, S. B.; Dengb, B.; Ellis, D. E.; Ketterson, J. B.; Mello, A.; Eon, J. G.; Terra, J.; Rossi, A. (2007). Crystalline hydroxyapatite thin films produced at room temperature - An opposing radio frequency magnetron sputtering approach. Thin Solid Films, 515: 6773–6780.

https://doi.org/10.1016/j.tsf.2007.02.089

Huracek, J.; Spirig, P. (1994). The effect of hydroxyapatite coating on the fixation of hip prostheses. Archives of Orthopaedic and Trauma Surgery, 113 : 72 – 77.

https://doi.org/10.1007/BF00572908

Kubásek, J.; Vojtěch, D.; Jablonská, E.; Pospíšilová, I.; Lipov, J.; Ruml, T. (2016). Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys. Materials Science and Engineering C, 58: 24–35.

https://doi.org/10.1016/j.msec.2015.08.015

Liu, D. M.; Yang, Q.; Troczynski, T. (2002). Sol–gel hydroxyapatite coatings on stainless steel substrates. Biomaterials, 23: 691–698.

https://doi.org/10.1016/S0142-9612(01)00157-0

Martín-Cameána, A.; Jos, A.; Mellado-García, P.; Iglesias-Linares, A.; Solano, E.; Cameán, A. M. (2015). In vitro and in vivo evidence of the cytotoxic and genotoxic effects of metal ions released by orthodontic appliances: A review. Environmental Toxicology and Pharmacology 40: 86–113.

https://doi.org/10.1016/j.etap.2015.05.007

Mcentire, B. J.; Bal, B. S.; Rahaman, M. N.; Chevalier, J.; Pezzoti, G. (2015). Ceramics and ceramics coatings in orthopeadics. Journal of the European Ceramic Society, 35: 4327-4369.

https://doi.org/10.1016/j.jeurceramsoc.2015.07.034

Nelea, V.; Ristoscu, V.; Chiritescu, C.; Ghica, C.; Mihailescu, I. N.; Pelletier, H.; Mille, P.; Cornet, A. (2000). Pulsed laser deposition of hydroxyapatite thin flms on Ti-5Al-2.5Fe substrates with and without buffer layers. Applied Surface Science, 168: 127-131.

https://doi.org/10.1016/S0169-4332(00)00616-4

Nú-ez, C.; Roca, A.; Jorba, J. (2012). Comportamiento mecánico de los materiales. Volumen 1: Conceptos fundamentales. 2a ed. Barcelona: Publicaciones Universidad de Barcelona.

Ohtsu, N.; Abe, C.; Ashino, T.; Semboshi, S.; Wagatsuma, K. (2008). Calcium-hydroxide slurry processing for bioactive calciumtitanate coating on titanium. Surface & Coatings Technology, 202: 5110–5115.

https://doi.org/10.1016/j.surfcoat.2008.05.035

Ozeki, K.; Janurudin, J. M.; Aoki, H.; Fukui, H. (2007). Photocatalytic hydroxyapatite/titanium dioxide multilayer thin film deposited onto glass using an rf magnetron sputtering technique. Applied Surface Science, 253: 3397– 3401.

https://doi.org/10.1016/j.apsusc.2006.07.030

Park, J. W.; Tustusmi, Y.; Lee, C. S.; Park, C. H.; Kim, Y. J.; Jang, J. H.; Khang, D.; Im, Y. M.; Doi, H.; Nomura, N.; Hanawa, T. (2011). Surface structures and osteoblast response of hydrothermally produced CaTiO3 thin film on Ti–13Nb–13Zr alloy. Applied Surface Science, 257: 7856–7863.

https://doi.org/10.1016/j.apsusc.2011.04.054

Porter, A. E.; Taak, P.; Hobbs, L. W.; Coathup, M. J.; Blunn, G. W.; Spector, M. (2004). Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy. Biomaterials, 25: 5199–5208.

https://doi.org/10.1016/j.biomaterials.2003.12.018

Protocolo de Lonza. (2016). Recuperado de http://bio.lonza.com/uploads/tx_mwaxmarketingmaterial/Lonza_ManualsProductInstructions_TechSheet_-_Human_Osteoblast_Cell_System_NHOst.pdf

Quan, R.; Tang, Y.; Huang, Z.; Xu, J.; Wu, X.; Yang, D. (2013). Study on the genotoxicity of HA/ ZrO2 composite particles in vitro. Materials Science and Engineering C, 33: 1332–1338.

https://doi.org/10.1016/j.msec.2012.12.033

Silva, C. C.; Thomazini, D.; Pinheiro, A. G.; Aranha, N.; Figueiró, S. D.; Góes, J. C.; Sombra, A. S. (2011). Collagen–hydroxyapatite films: piezoelectric properties. Materials Science and Engineering, B86 : 210–218.

https://doi.org/10.1016/S0921-5107(01)00674-2

Stanishevsky, A. V.; Holliday, S. (2007). Mechanical properties of sol–gel calcium titanate bioceramic coatings on titanium. Surface & Coatings Technology, 202: 1236–1241

https://doi.org/10.1016/j.surfcoat.2007.07.091

Surmeneva, M. A.; Mukhametkaliyev, T. M.; Tyurin, A. I.; Teresov, A. D.; Koval, N. N.; Pirozhkova, T. S.; Shuvarin, I. A.; Shuklinov, A. V.; Zhigachev, A. O.; Oehr, C.; Surmenev, R. A. (2015). Effect of silicate doping on the structure and mechanical properties of thin nanostructured RF magnetron sputterdeposited hydroxyapatite films. Surface & Coatings Technology, 275: 176–184.

https://doi.org/10.1016/j.surfcoat.2015.05.021

Tang, H.; Wang, F. (2013). Synthesis and properties of CaTiO3-containing coating on AZ31 magnesium alloy by micro-arc oxidation. Materials Letters, 93: 427–430.

https://doi.org/10.1016/j.matlet.2012.11.017

Velasco-Ortega, E.; Jos, A.; Cameán, A. M.; Pato- Mourelo, J.; Segura-Egea, J. J. (2010). In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutation Research, 702: 17–23.

https://doi.org/10.1016/j.mrgentox.2010.06.013

Webster, T. J.; Ergun, C.; Doremus, R. H.; Lanford, W. A. (2003). Increased osteoblast adhesion on titanium-coated hydroxylapatite that forms CaTiO3. Journal of Biomedical Materials Research Part A: Applied Biomaterials, 67A: 975 – 980.

https://doi.org/10.1002/jbm.a.10160

Wiff, J. P.; Fuenzalida, V. M.; Arias, J. L.; Fernandez, M. S. (2007). Hydrothermal–electrochemical CaTiO3 coatings as precursor of a biomimetic calcium phosphate layer. Materials Letters, 61: 2739–2743.

https://doi.org/10.1016/j.matlet.2006.06.092

Zhen-Jun, W.; Li-Ping, H.; Zong-Zhang, C. (2006). Fabrication and characterization of hydroxyapatite/A12O3 biocomposite coating on titanium. Trans. Nonferrous Met. SOC. China 16: 259-266.

https://doi.org/10.1016/S1003-6326(06)60044-7

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2019 Servicio Nacional de Aprendizaje (SENA)

Descargas

Los datos de descargas todavía no están disponibles.