IoT high-frequency electronic transformer with dimmable output voltage using PWM signals
XML English
PDF English

Palabras clave

control system
electronic transformer
full-bridge inverter
PWM
rectifier
remote control control remoto
inversor de puente complete
PWM
rectificador
sistema de control
transformador electrónico

Cómo citar

Trillos-León, N., Barrero-Pérez, J., Jaimes-Flórez, J., & Rojas, D. (2021). IoT high-frequency electronic transformer with dimmable output voltage using PWM signals. Informador Técnico, 85(2), 146–159. https://doi.org/10.23850/22565035.3363

Resumen

This work presents the design, simulation, and implementation of a low-power electronic transformer, which output effective voltage can be controlled wirelessly through WIFI, via a user interface on a mobile phone. The methodology used in this project consists of 4 stages, a rectifier, an inverter, the inverter’s control system, and a ferrite reducer. The inverter has a full-bridge design and was implemented using MOSFET. The control system can vary the frequency and duty cycle of the output signals, by phase shifting the control signals, thus achieving the functionality of reducing the effective output voltage. Circuit design simulations were performed using PsPice Orcad. The implementation and the mathematical model of the built electronic transformer are carried out. The designed transformer operates with a maximum input voltage of 120 Vrms at 60 Hz at frequencies between 20 kHz and 30 kHz, which are controlled through the user interface; can reduce a 120 Vrms 60 Hz input signal to an effective voltage between 10 Vrms and 20 Vrms at a maximum power of 50 W. This project presents the feasibility of developing electronic transformers with variable output voltage, remotely controlled using IoT technology.

https://doi.org/10.23850/22565035.3363
XML English
PDF English

Citas

Ashour, Hamdy (2008). A new electronic step-up/down voltage stabilizer topology based on the H-Bridge AC chopper. 12th International Middle-East Power System Conference (pp. 600-604). Aswan, Egypt. https://doi.org/10.1109/MEPCON.2008.4562400

Basu, Kaushi; Mohan, Ned (2014). A Single-Stage Power Electronic Transformer for a Three-Phase PWM AC/AC Drive With Source-Based Commutation of Leakage Energy and Common-Mode Voltage Suppression. IEEE Transactions on Industrial Electronics, 61(11), 5881-5893. https://doi.org/10.1109/TIE.2014.2311393

Battal, Funda; Balci, Selami; Sefa, Ibrahim (2021). Power electronic transformers: a review. Measurement, 171, 108848. https://doi.org/10.1016/j.measurement.2020.108848

Dhanraj, Joshuva; Krishnamurthy, Balachandar; Ramanathan, Kuppan; Saravanan, A. K.; Raman, Jeya (2020). Design on IoT Based Real Time Transformer Performance Monitoring System for Enhancing the Safety Measures. IOP Conference Series. Materials Science and Engineering, 988(1), 012076. https://doi.org/10.1088/1757-899X/988/1/012076

Dujic, Drazen; Kieferndorf, Frederick; Canales, Francisco; Drofeni, Uwe (2012). Power electronic traction transformer technology. Proceedings of The 7th International Power Electronics and Motion Control Conference (pp. 636-642). Harbin, China. https://doi.org/10.1109/IPEMC.2012.6258820

Espressif (2018). Espressif. Retrieved from https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/mcpwm.html

Fang, Liew; Rahim, Resemi; Naimah, Siti (2021). Design of artificial piezo-leaf wind energy harvesting system monitoring based on Blynk apps. AIP Conference Proceedings, 2339(1), 20005. https://doi.org/10.1063/5.0044292

Hart, Daniel (2010). Power Electronics. Valparaiso, IN, USA: McGraw Hill.

Hayaty, Mardhiya; Mutmainah, Ade (2019). IoT-Based electricity usage monitoring and controlling system using Wemos and Blynk application. Jurnal Teknologi Dan Sistem Komputer, 7(4), 161-165. https://doi.org/10.14710/jtsiskom.7.4.2019.161-165

He, Rongzhen; Zhang, Yanli; Zhang, Dianhai; Xie, Dexin (2018). An Improvement of Core Losses Estimation Model in Power Electronic Transformer. IEEE Student Conference on Electric Machines and Systems (pp. 1-5). Huzhou, China. https://doi.org/10.1109/SCEMS.2018.8624711

Ismail, Esan; Al-Saffar, Mustafa; Sabzali, Ahmad; Fardoun, Abbas (2008). A Family of Single-Switch PWM Converters With High Step-Up Conversion Ratio. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(4), 1159-1171. https://doi.org/10.1109/TCSI.2008.916427

Jain, Amit; Ayyanar, Raja (2011). Pwm control of dual active bridge: Comprehensive analysis and experimental verification. IEEE Transactions on Power Electronics, 26(4), 1215-1227. https://doi.org/10.1109/TPEL.2010.2070519

Jirasereeamornkul, Kamon; Boonyaroonate, Itsda; Chamnongthai, Kosin (2003). High-efficiency electronic transformer for low. IEEE International Symposium on Circuits and Systems (ISCAS) (p. 3). Bangkok, Thailand. https://doi.org/10.1109/ISCAS.2003.1205029

Keke, Liu; Lin, Li (2014). Analysis of favored design frequency of high-frequency transformer with different power capacities. International Conference on Power System Technology (POWERCON) (pp. 2272-2278). Chengdu, China. https://doi.org/10.1109/POWERCON.2014.6993764

Kumar, Seshasai (2016). Design of high frequency power transformer for switched mode power supplies. International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS) (pp. 1-5). Pudukkottai, India. https://doi.org/10.1109/ICETETS.2016.7603076

Mishima, Tomokazu; Nakaoka, Mutsuo (2009). A Novel High-Frequency Transformer-Linked Soft-Switching Half-Bridge DC–DC Converter With Constant-Frequency Asymmetrical PWM Scheme. IEEE Transactions on Industrial Electronics, 56(8), 2961-2969. https://doi.org/10.1109/TIE.2009.2013692

Mora, Jesús (2005). Maquinas Electricas. Madrid, España: McGraw Hill.

Nerone, Louis R.; Trevino, B. (2001). A new halogen electronic transformer. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (pp. 461-466). Anaheim, CA, USA. https://doi.org/10.1109/APEC.2001.911687

Polonskii, M. (2004). Design procedure for dimmable electronic transformer. IEEE International Conference on Industrial Technology (pp. 695-700). Hammamet, Tunisia. https://doi.org/10.1109/ICIT.2004.1490159

Rashid, Muhammad (2006). Power Electronics. Circuits, Devices and Applications. New Jersey, NJ, USA: Pearson Prentice Hall.

Sutanto, Erwin; Putra, Tomy; Kuncahyojat, Anindriyo; Agustin, Eva (2020). IoT based electricity leakage current monitoring using Blynk app. AIP Conference Proceedings, 2314(1), 40004. https://doi.org/10.1063/5.0034352

Triki, Yacine; Bechouche, Ali; Seddiki, Hamid; Abdeslam, Djaffar (2019). High Performance Control of Single-Phase Full Bridge Inverters Under Linear and Nonlinear Loads. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society (pp. 400-405). Lisbon, Portugal. https://doi.org/10.1109/IECON.2019.8927102

Trillos-León, Nelson-Enrique; Barrero-Pérez, Jaime-Guillermo; Gómez Pinto, Jorge-Eliecer (2020). Diseño y construcción de un transformador electrónico 12 Vrms 50 W con control de frecuencia de conmutación programable. Scientia et Technica, 25(3), 358-366. https://doi.org/10.22517/23447214.24251

York, Ben; Yu, Wensong; Lai, Jason (2013). Hybrid-Frequency Modulation for PWM-Integrated Resonant Converters. IEEE Transactions on Power Electronics, 28(2), 985-994. https://doi.org/10.1109/TPEL.2012.2201960

Zhang, Chaolong; He, Yigang; Du, Bolun; Yuan, Lifen; Li, Bing; Jiang, Shanhe (2020). Transformer fault diagnosis method using IoT based monitoring system and ensemble machine learning. Future Generation Computer Systems, 108, 533–545. https://doi.org/https://doi.org/10.1016/j.future.2020.03.008

Zhang, Darning; Tseng, King-Jet (2006). Effect of high permittivity and core dimensions on the permeability measurement for Mn-Zn ferrite cores used in high-frequency transformer. Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA'06) (p. 378). Kuala Lumpur, Malaysia. https://doi.org/10.1109/DELTA.2006.40

Zotov, Leonid-Grigoryevich; Razinkin, Vladimir P.; Atuchin, Victor V. (2017). Controllable electronic transformer based on the resonance structure with switching capacitor for low-rise buildings residential area power supply stabilization systems. International Journal of Electrical Power & Energy Systems, 91, 117-120. https://doi.org/https://doi.org/10.1016/j.ijepes.2017.03.004

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2021 Servicio Nacional de Aprendizaje SENA

Descargas

Los datos de descargas todavía no están disponibles.