Informador Técnico
ISSN: 2256-5035 (Electrónico)
ISSN: 0122-056X (Impreso)
Formato: Electrónico / Acceso Abierto
Frecuencia: Números Semestrales
Revisión por Pares: Doble Ciego
La alta demanda de plásticos como el PET y el escaso conocimiento sobre la economía verde o el reciclaje ha incrementado los efectos adversos al medio ambiente por acumulación incontrolada de residuos plásticos que terminan en las fuentes hídricas. Dentro de las estrategias que se han estudiado para controlar este problema, la degradación mediante microorganismos ha dado óptimos resultados en eficiencia y economía. Mediante una revisión bibliográfica, se especifica el mecanismo (enzimas) para la degradación del PET, teniendo en cuenta las principales condiciones de cultivo y del microorganismo, el pretratamiento que se debe realizar al PET y los porcentajes de degradación alcanzados. También se presentan las aplicaciones industriales de los posibles subproductos para su aprovechamiento y disminución de la contaminación.
Ahmed, Temoor; Shahid, Muhammad; Azeem, Farrukh; Rasul, Ijaz; Shah, Asad Ali; Noman, Muhammad; ... Sher, Muhammad (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research, 25(8), 7287-7298. https://doi.org/10.1007/s11356-018-1234-9
Al-Kanany, Fadhil; Othman, Rasha (2020). Cloning and Expression of Pseudomonas aeruginosa AlkB Gene in E. coli. Journal of Pure and Applied Microbiology, 14(1), 389-396. https://doi.org/10.22207/JPAM.14.1.40
Billig, Susan; Thorsten, Oeser; Birkemeyer, Claudia; Zimmermann, Wolfgang (2010). Hydrolysis of cyclic poly (ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3. Applied Microbiology and Biotechnology, 87(5), 1753-1764. https://doi.org/10.1007/s00253-010-2635-y
Carr, Clodagh; Clarke, David; Dobson, Alan (2020). Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives. Frontiers in Microbiology, 11, 571265. https://doi.org/10.3389/fmicb.2020.571265
de Castro, Aline; Carniel, Adriano; Nicomedes, José; da Conceição-Gomes, Absai; Valoni, Érika (2017). Screening of commercial enzymes for poly (ethylene terephthalate) (PET) hydrolysis and synergy studies on different substrate sources. Journal of Industrial Microbiology and Biotechnology, 44(6), 835-844. https://doi.org/10.1007/s10295-017-1942-z
de Faria, Paulo; Wisbeck, Elisabeth; Pereira, Luciana (2015). Biodegradação de polipropileno recilado (ppr) e de poli (tereftalato de etileno) reciclado (petr) por Pleurotus ostreatus. Matéria, 20(2), 452-459. https://doi.org/10.1590/S1517-707620150002.0045
Donelli, Ilaria; Freddi, Giuliano; Nierstrasz, Vincent; Taddei, Paola (2010). Surface structure and properties of poly-(ethylene terephthalate) hydrolyzed by alkali and cutinase. Polymer Degradation and Stability, 95(9), 1542-1550. https://doi.org/10.1016/j.polymdegradstab.2010.06.011
Espino-Rammer, Liliana; Ribitsch, Doris; Przylucka, Agnieszka; Marold, Annemarie; Greimel, Katrin; Herrero-Acero, Enrique; ... Druzhinina, Irina (2013). Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly (ethylene terephthalate) when expressed as fusion proteins. Applied and Environmental Microbiology, 79(14), 4230. https://doi.org/10.1128/AEM.01132-13
Falah, Wajeeha; Chen, Fu-Jia; Zeb, Bibi; Hayat, Tahir; Mahmood, Qaisar; Ebadi, Abdolghaffar; ... Li, En-Zhong (2020). Polyethylene Terephthalate Degradation by Microalga Chlorella vulgaris Along with Pretreatment. Materiale Plastice, 57(3), 260-270. https://doi.org/10.37358/MP.20.3.5398
Farzi, Ali; Dehnad, Alireza; Fotouhi, Afsaneh (2019). Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatalysis and Agricultural Biotechnology, 17, 25-31. https://doi.org/10.1016/j.bcab.2018.11.002
Fecker, Tobias; Galaz-Davison, Pablo; Engelberger, Felipe; Narui, Yoshie; Sotomayor, Marcos; Parra, Loreto; Ramírez-Sarmiento, César (2018). Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophysical Journal, 114(6), 1302-1312. https://doi.org/10.1016/j.bpj.2018.02.005
Furukawa, Makoto; Kawakami, Norifumi; Tomizawa, Atsushi; Miyamoto, Kenji (2019). Efficient degradation of poly (ethylene terephthalate) with Thermobifida fusca cutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches. Scientific Reports, 9(1), 1-9. https://doi.org/10.1038/s41598-019-52379-z
Goel, Reeta; Jayal, Priyanka; Negi, Harshita; Saravanan, P. R.; Zaidi, M. G. H. (2014). Comparative in situ PET biodegradation assay using indigenously developed consortia. International Journal of Environment and Waste Management, 13(4), 348-361. https://doi.org/10.1504/IJEWM.2014.060441
Gong, Jixian; Kong, Tongtong; Li, Yuqiang; Li, Qiujin; Li, Zheng; Zhang, Jianfei (2018). Biodegradation of microplastic derived from poly (ethylene terephthalate) with bacterial whole-cell biocatalysts. Polymers, 10(12), 1326. https://doi.org/10.3390/polym10121326
Grigore, Madalina (2017). Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling, 2(4), 24. https://doi.org/10.3390/recycling2040024
Hadiyanto, Hadiyanto; Widayat, Widayat; Kumoro, Andri Cahyo (2012). Potency of microalgae as biodiesel source in Indonesia. International Journal of Renewable Energy Development, 1(1), 23-27. https://doi.org/10.14710/ijred.1.1.23-27
Hiraga, Kazumi; Taniguchi, Ikuo; Yoshida, Shousuke; Kimura, Yoshiharu; Oda, Kohei (2019). Biodegradation of waste PET: A sustainable solution for dealing with plastic pollution. EMBO Reports, 20(11), e49365. https://doi.org/10.15252/embr.201949365
Hyde, Kevin; Xu, Jianchu; Rapior, Sylvie; Jeewon, Rajesh; Lumyong, Saisamorn; Niego, Allen Grace; ... Stadler, Marc (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 97, 1-136. https://doi.org/10.1007/s13225-019-00430-9
Ioakeimidis, Christos; Fotopoulou, Kalliopi; Karapanagioti, Hrissi; Geraga, Maria; Zeri, Christina; Papathanassiou, Enangelos; ... Papatheodorou, George (2016). The degradation potential of PET bottles in the marine environment: An ATR-FTIR based approach. Scientific Reports, 6(1), 1-8. https://doi.org/10.1038/srep23501
Iram, Darakhsanda; Riaz, Rafi; Iqbal, Rana (2019) Usage of Potential Micro-organisms for Degradation of Plastics. Open Journal of Enviromental Biology, 4(1), 7-15. https://doi.org/10.17352/ojeb.000010
Janczak, Katarzyna; Hrynkiewicz, Katarzyna; Znajewska, Zuzanna; Dąbrowska, Grazyna (2018). Use of rhizosphere microorganisms in the biodegradation of PLA and PET polymers in compost soil. International Biodeterioration & Biodegradation, 130, 65-75. https://doi.org/10.1016/j.ibiod.2018.03.017
Kawai, Fusako; Kawabata, Takeshi; Oda, Masayuki (2019). Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Applied Microbiology and Biotechnology, 103, 4253-4268. https://doi.org/10.1007/s00253-019-09717-y
Khoironi, Adian; Anggoro, Sutrisno; Sudarno, Sudarno (2019). Evaluation of the interaction among microalgae Spirulina sp, plastics polyethylene terephthalate and polypropylene in freshwater environment. Journal of Ecological Engineering, 20(6), 161-173. https://doi.org/10.12911/22998993/108637
Khoonkari, Mohammad; Haghighi, Amir; Sefidbakht, Yahya; Shekoohi, Khadijeh; Ghaderian, Abolfazl (2015). Chemical recycling of PET wastes with different catalysts. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/124524
Koschevic, Marivane (2015). Biodegradation of PET (polyethylene terephthalate) by ligninolytic fungi (tesis de pregrado). Universidade Tecnológica Federal do Paraná, Panamá.
Kumar, Ganesh; Anjana, K.; Hinduja, M.; Sujitha, K; Dharani, G. (2020). Review on plastic wastes in marine environment–Biodegradation and biotechnological solutions. Marine Pollution Bulletin, 150, 110733. https://doi.org/10.1016/j.marpolbul.2019.110733
Lee, Alicia; Liew, Mei (2020). Ecologically derived waste management of conventional plastics. Journal of Material Cycles and Waste Management, 22, 1-10. https://doi.org/10.1007/s10163-019-00931-4
Ma, Yuan; Yao, Mingdong; Li, Bingzhi; Ding, Mingzhu; He, Bo; Chen, Si; ... Yuan, Yingjin (2018). Enhanced poly (ethylene terephthalate) hydrolase activity by protein engineering. Engineering, 4(6), 888-893. https://doi.org/10.1016/j.eng.2018.09.007
Malafatti-Picca, Lusiane; de Barros-Chaves, Michel-Ricardo; de Castro, Aline; Valoni, Érika; de Oliveira, Valéria-Maia; Marsaioli, Anita-Jocelyne; ... Attili-Angelis, Derlene (2019). Hydrocarbon-associated substrates reveal promising fungi for poly (ethylene terephthalate) (PET) depolymerization. Brazilian Journal of Microbiology, 50(3), 633-648. https://doi.org/10.1007/s42770-019-00093-3
Molitor, Rebecka; Bollinger, Alexander; Kubicki, Sonja; Loeschcke, Anita; Jaeger, Karl-Erick; Thies, Stephan (2020). Agar plate‐based screening methods for the identification of polyester hydrolysis by Pseudomonas species. Microbial Biotechnology, 13(1), 274-284. https://doi.org/10.1111/1751-7915.13418
Moog, Daniel; Schmitt, Johanna; Senger, Jana; Zarzycki, Jan; Rexer, Karl-Heinz; Linne, Uwe; ... Maier, Uwe (2019). Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microbial Cell Factories, 18(1), 171. https://doi.org/10.1186/s12934-019-1220-z
Nisticò, Roberto (2020). Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing, 90, 106707. https://doi.org/10.1016/j.polymertesting.2020.106707
Palm, Gottfried; Reisky, Lukas; Böttcher, Dominique; Müller, Henrik; Michels, Emile; Walczak, Miriam; ... Weber, Gert (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nature Communications, 10(1), 1-10. https://doi.org/10.1038/s41467-019-09326-3
Papadopoulou, Athena; Hecht, Katrin; Buller, Rebecca (2019). Enzymatic PET degradation. Chimia International Journal for Chemistry, 73(9), 743-749. https://doi.org/10.2533/chimia.2019.743
Ribitsch, Doris; Herrero-Acero, Enrique; Greimel, Katrin; Dellacher, Anita; Zitzenbacher, Sabine; Marold, Annemarie; ... Guebitz, Georg (2012). A new esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA). Polymers, 4(1), 617-629. https://doi.org/10.3390/polym4010617
Roberts, Cameron; Edwards, Sabrina; Vague, Morgan; León-Zayas, Rosa; Scheffer, Henry; Chan, Gayle; ... Mellies, Jay (2020). Environmental Consortium Containing Pseudomonas and Bacillus Species Synergistically Degrades Polyethylene Terephthalate Plastic. Msphere, 5(6), e01151-20. https://doi.org/10.1128/mSphere.01151-20
Ru, Jiakang; Huo, Yixin; Yang, Yu (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, 442. https://doi.org/10.3389/fmicb.2020.00442
Samak, Nadia; Jia, Yunpu; Sharshar, Moustafa; Mu, Tingzhen; Yang, Maohua; Peh, Sumit; Xing, Jianmin (2020). Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environment International, 145, 106144. https://doi.org/10.1016/j.envint.2020.106144
Sowmya, H. V.; Krishnappa, Ramalingappa; Thippeswamy, B. (2014). Degradation of polyethylene by Trichoderma harzianum—SEM, FTIR, and NMR analyses. Environmental Monitoring and Assessment, 186(10), 6577-6586. https://doi.org/10.1007/s10661-014-3875-6
Then, Johannes; Wei, Ren; Oeser, Thorsten; Barth, Markus; Belisário‐Ferrari, Matheus; Schmidt, Juliane; Zimmermann, Wolfgang (2015). Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnology Journal, 10(4), 592-598. https://doi.org/10.1002/biot.201400620
Tournier, V.; Topham, C. M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; ... Marty, A. (2020). An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 580(7802), 216-219. https://doi.org/10.1038/s41586-020-2149-4
Valderrama-Ocoró, María; Chavarro-Guzmán, Luz; Osorio-Gómez, Juan; Peña-Montoya, Claudia (2018). Estudio dinámico del reciclaje de envases pet en el Valle del Cauca. Revista Lasallista de Investigación, 15(1). https://doi.org/10.22507/rli.v15n1a6
Vieira, Francisco; Nahas, Ely (2005). Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiological Research, 160(2), 197-202. https://doi.org/10.1016/j.micres.2005.01.004
Wang, Nan; Guan, Feifei; Lv, Xiang; Han, Dongfei; Zhang, Yuhong; Wu, Ningfeng; ... Tian, Jian (2020). Enhancing secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis WB600 mediated by the SPamy signal peptide. Letters in Applied Microbiology, 71(3), 235-241. https://doi.org/10.1111/lam.13312
Webb, Hayden; Arnott, Jaimys; Crawford, Russell; Ivanova, Elena (2013). Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers, 5(1), 1-18. https://doi.org/10.3390/polym5010001
Wei, Ren; Breite, Daniel; Song, Chen; Gräsing, Daniel; Ploss, Tina; Hille, Patrick; ... Zimmermann, Wolfgang (2019). Biocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructures. Advanced Science, 6(14). https://doi.org/10.1002/advs.201900491
Wei, Ren; Oeser, Thorsten; Then, Johannes; Kühn, Nancy; Barth, Markus; Schmidt, Juliane; Zimmermann, Wolfgang (2014). Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express, 4(1), 44. https://doi.org/10.1186/s13568-014-0044-9
Wei, Ren; Zimmermann, Wolfgang (2017). Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microbial Biotechnology, 10(6), 1302-1307. https://doi.org/10.1111/1751-7915.12714
Wilkes, Rebecca-Ann; Aristilde, Ludmilla (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. Journal of Applied Microbiology, 123(3), 582-593. https://doi.org/10.1111/jam.13472
Yan, Fei; Wei, Ren; Cui, Qiu; Bornscheuer, Uwe; Liu, Ya-Jun (2020). Thermophilic whole‐cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum. Microbial Biotechnology, 14(2), 374-385. https://doi.org/10.1111/1751-7915.13580
Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; ... Oda, Kohei (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196-1199. https://doi.org/10.1126/science.aad6359
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2021 Servicio Nacional de Aprendizaje SENA