Informador Técnico
ISSN: 2256-5035 (Electrónico)
ISSN: 0122-056X (Impreso)
Formato: Electrónico / Acceso Abierto
Frecuencia: Números Semestrales
Revisión por Pares: Doble Ciego
La mineralogía de procesos es una herramienta que ofrece información de gran utilidad para la modificación de procesos de obtención de oro para mejorar su eficiencia. El objetivo de este trabajo fue evaluar la mineralogía y la oxidación del mineral en el proceso de lixiviación de oro a partir de muestras de mineral aurífero refractario con soluciones de tiosulfato mediante técnicas analíticas como la Microscopía Óptica de Luz Plana Polarizada (MOLPP), Tratamiento Digital de Imágenes TDI, Microscopía Electrónica de Barrido (SEM/EDS) y Difracción de Rayos X (DRX). La caracterización mineralógica previa al proceso de lixiviación reveló asociación, tamaño y forma de ocurrencia de cada una de las fases minerales, encontrándose que el mineral empleado estaba compuesto principalmente por pirita en cristales inequigranulares y subhedrales (58% de la muestra); cristales de galena (15% de la muestra); cristales de esfalerita, calcopirita y arsenopirita (7% de la muestra);menos del 1% de oro libre y fases de aluminosilicatos (19% de la muestra). Ensayos al fuego mostraron 59 g/ton de oro y 70 g/ton de plata. Luego del proceso de lixiviación se encontró acumulación de granos individuales de pirita con surcos de corrosión, disminución de su tamaño de partícula, así como la disolución de las fases acompañantes:esfalerita, calcopirita, galena y arsenopirita. No se observó la presencia de cobre precipitado. Fue necesario realizar un pretratamiento oxidante del mineral, seguido por una lixiviación se logró una liberación de oro hasta del 82%. La caracterización mineralógica permitió definir condiciones adecuadas para la recuperación de oro.
Abrantes, L. M., & Costa, M. C. (1996). Electrooxidation as a pretreatment for gold recovery. Hydrometallurgy, 40(1-2), 99–110. http://doi.org/10.1016/0304-386X(94)00077-G
https://doi.org/10.1016/0304-386X(94)00077-G
Adams, M. D. (2005). Advances in Gold Ore Processing. Developments in Mineral Processing, 15, 994–1013. http://doi.org/10.1016/S0167-528(05)15041-8
https://doi.org/10.1016/S0167-4528(05)15041-8
Amankwah, R. K., & Pickles, C. A. (2009). Microwave roasting of a carbonaceous sulphidic gold concentrate. Minerals Engineering, 22(13), 1095–1101. http://doi.org/10.1016/j.mineng.2009.02.012
https://doi.org/10.1016/j.mineng.2009.02.012
ASTM. (2012). Standard Test Method for Microscopical Determination of the Maceral Composition of. ASTM International, D2799–11, 1–6.
Awe, S. A., & Sandstrom, K. (2010). Selective leaching of arsenic and antimony from a tetrahedrite rich complex sulphide concentrate using
https://doi.org/10.1016/j.mineng.2010.08.018
Baláž, P, Achimovičová, M. (2006). Selective leaching of antimony and arsenic from mechanically activated tetrahedrite,jamesonite and enargite. International Journal of Mineral Processing, 81(1), 44–50. http://doi.org/10.1016/j.minpro.2006.06.004
https://doi.org/10.1016/j.minpro.2006.06.004
Bennett, J. C., & Tributsch, H. (1978). Bacterial leaching patterns on pyrite crystal surfaces.Journal of Bacteriology, 134(1), 310–317.
Breuer, P. L., & Jeffrey, M. I. (2000). Thiosulfate leaching kinetics of gold in the presence of copper and ammonia. Minerals Engineering,
https://doi.org/10.1016/S0892-6875(00)00091-1
Celep, O., Alp, I., & Deveci, H. (2011). Improved gold and silver extraction from a refractory antimony ore by pretreatment with alkaline
https://doi.org/10.1016/j.hydromet.2010.10.005
Celep, O., Alp, I., Paktune, D., & Thibault, Y. (2011).Implementation of sodium hydroxide pretreatment for refractory antimonial gold and silver ores. Hydrometallurgy, 108(1-2), 109–114. http://doi.org/10.1016/j. hydromet.2011.03.005
https://doi.org/10.1016/j.hydromet.2011.03.005
Chen, T., Cabri, L., & Dutrizac, J. (2002). Characterizing gold in refractory sulfide gold ores and residues. Jom, 54(12)(December), 1–3.
https://doi.org/10.1007/bf02709181
Climo, M., Watling, H. R., & Van Bronswijk, W. (2000).Biooxidation as pretreatment for a telluriderich refractory gold concentrate. Minerals
https://doi.org/10.1016/S0892-6875(00)00106-0
Córdoba, E. M., Mu-oz, J. A., Blázquez, M. L.,González, F., & Ballester, A. (2008).Leaching of chalcopyrite with ferric ion. Part I: General aspects. Hydrometallurgy,93(3-4), 81–87. http://doi.org/10.1016/j.hydromet.2008.04.015
https://doi.org/10.1016/j.hydromet.2008.04.015
Corkhill, C. L., & Vaughan, D. J. (2009). Arsenopyrite oxidation - A review. Applied Geochemistry, 24(12), 2342–2361. http://doi.org/10.1016/j.apgeochem.2009.09.008
https://doi.org/10.1016/j.apgeochem.2009.09.008
Feng, D., & Van Deventer, J. S. J. (2002). Leaching behaviour of sulphides in ammoniacal thiosulphate systems. Hydrometallurgy, 63(2),
https://doi.org/10.1016/S0304-386X(01)00225-0
Feng, D., & van Deventer, J. S. J. (2006). Ammoniacal thiosulphate leaching of gold in the presence of pyrite. Hydrometallurgy, 82(3-4), 126–132. http://doi.org/10.1016/j. hydromet.2006.03.006
https://doi.org/10.1016/j.hydromet.2006.03.006
Feng, D., & van Deventer, J. S. J. (2007a). Effect of hematite on thiosulphate leaching of gold. International Journal of Mineral processing,82(3), 138–147. http://doi.org/10.1016/j.minpro.2006.09.003
https://doi.org/10.1016/j.minpro.2006.09.003
Feng, D., & van Deventer, J. S. J. (2007b). Interactions between sulphides and manganese dioxide in thiosulphate leaching of gold ores.
https://doi.org/10.1016/j.mineng.2006.10.012
Feng, D., & van Deventer, J. S. J. (2007c). The effect of sulphur species on thiosulphate leaching of gold. Miner. Eng, 20, no. 3, 273–281.
https://doi.org/10.1016/j.mineng.2006.10.001
Feng, D., & van Deventer, J. S. J. (2010). Oxidative pretreatment in thiosulphate leaching of sulphide gold ores. International Journal of
https://doi.org/10.1016/j.minpro.2009.11.002
Gudyanga, F. P., Mahlangu, T., Roman, R. J.,Mungoshi, J., & Mbeve, K. (1999). Acidic pressure oxidation pretreatment of refractory gold concentrates from the Kwekwe roasting plant, Zimbabwe. Minerals Engineering, 12(8),863–875. http://doi.org/10.1016/S0892-6875(99)00074-6
https://doi.org/10.1016/S0892-6875(99)00074-6
Hashemzadehfini, M., Ficeriová, J., Abkhoshk, E., & Shahraki, B. K. (2011). Effect of mechanical activation on thiosulfate leaching of gold from complex sulfide concentrate. Transactions of Nonferrous Metals Society of China (English Edition), 21(12), 2744–2751. http://doi.org/10.1016/S1003-6326(11)61118-7
https://doi.org/10.1016/S1003-6326(11)61118-7
Iglesias, N., & Carranza, F. (1996). Treatment of a gold bearing arsenopyrite concentrate by ferric sulphate leaching. Minerals Engineering,9(3), 317–330. http://doi.org/10.1016/0892-6875(96)00016-7
https://doi.org/10.1016/0892-6875(96)00016-7
Klauber, C. (2008). A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. International Journal of Mineral Processing, 86(1-4), 1–17. http://doi.org/10.1016/j.minpro.2007.09.003
https://doi.org/10.1016/j.minpro.2007.09.003
Leng, F., Li, K., Zhang, X., Li, Y., Zhu, Y., Lu, J.,& Li, H. (2009). Comparative study of inorganic arsenic resistance of several
https://doi.org/10.1016/j.hydromet.2009.05.004
Márquez G., M. A. (1999). Mineralogia dos processos de oxidacao sobre pressao e bacteriana do minerio de ouro da mina Sao Bento, MG. Tese de doutorado. Universidad de Brasilia.
Márquez, M. (1995). Caracterização mineralógica do minério, concentrado e rejeito da flotação da mina São Bento. Universidade de Brasília. Instituto de Geociências.
Marsden, J. O., & House, C. I. (2009). The chemistry of gold extraction. 2d ed. Metallurgy and Exploration, 42–44,111–126,161–177,191–193,233–263,297–333.
Mejía, E. R., Ospina, J. D., Márquez, M. A., & Morales, A. L. (2007). Bioleaching of Galena (PbS).Fourier Transform - Materials Analysis, 191–206.
Mejía, E. R., Ospina, J. D., Márquez, M. A., & Morales, A. L. (2009). Oxidation of chalcopyrite (CuFeS 2 ) by Acidithiobacillus ferrooxidans
https://doi.org/10.4028/www.scientific.net/AMR.71-73.385
Mesa Espitia, S. L., & Lapidus, G. T. (2015).Pretreatment of a refractory arsenopyritic gold ore using hydroxyl ion. Hydrometallurgy, 153, 106–113. http://doi.org/10.1016/j.hydromet.2015.02.013
https://doi.org/10.1016/j.hydromet.2015.02.013
Muir, D., & Aylmore, M. (2005). Thiosulfate as an alternative lixiviant to cyanide for gold ores.Dev. Miner. Process, vol. 15, 541–60.
https://doi.org/10.1016/S0167-4528(05)15022-4
Rohwerder, T., & Sand, W. (2003). The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp.Microbiology, 149(7), 1699–1709. http://doi.org/10.1099/mic.0.26212-0
https://doi.org/10.1099/mic.0.26212-0
Senanayake, G. (2004). Analysis of reaction kinetics,speciation and mechanism of gold leaching and thiosulfate oxidation by ammoniacal
https://doi.org/10.1016/j.hydromet.2004.06.004
Tongamp, W., Takasaki, Y., & Shibayama, A. (2009).Arsenic removal from copper ores and concentrates through alkaline leaching in NaHS media. Hydrometallurgy, 98(3-4), 213–218. http://doi.org/10.1016/j.hydromet.2009.04.020
https://doi.org/10.1016/j.hydromet.2009.04.020
Urbano, G., Meléndez, A.M., Reyes, V.E., Veloz,M.A., & Gonzáles, I. (2007). Galvanic interactions between galena – sphalerite and their reactivity. International Journal of Mineral Processing, 82, 148–155. http://doi.org/10.1016/j.minpro.2006.09.004
https://doi.org/10.1016/j.minpro.2006.09.004
Zhang Senanayake, G. & Nicol, M.J., X. M. (2004).The kinetics of the dissolution of gold colloid in oxygenated ammoniacal thiosulphate solutions. Hydrometallurgy, 74, 243–257.
https://doi.org/10.1016/j.hydromet.2004.05.007
Zhang, X.-M. (2008). The dissolution of gold colloids in aqueous thiosulfate solutions. Murdoch University, (August). Retrieved from http://oatd.org/oatd/record?record={%}22oai:researchrepository.murdoch.edu.au:672{%}22
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2019 Servicio Nacional de Aprendizaje (SENA)