Current overview of the state of disabled population, regarding the use of transtibial prosthesis
HTML (English)
XML (English)
PDF (English)

Palabras clave

foot
transtibial prosthesis
articulation
ankle pie
prótesis transtibial
articulación
tobillo.

Cómo citar

Hernández Martin, J., & Parra, L. A. (2017). Current overview of the state of disabled population, regarding the use of transtibial prosthesis. Informador Técnico, 81(2), 160–169. https://doi.org/10.23850/22565035.887

Resumen

En el Centro de Diseño y Metrología del SENA– CDM se ha detectado que la población en condición de discapacidad de miembros inferiores representa un desafío técnico y tecnológico en la recuperación de las condiciones normales de la marcha, puesto que se requieren intervenciones costosas o elementos que ayuden al desplazamiento de estas personas, como bastones, sillas de ruedas, muletas u otros implementos que sirvan de soporte y faciliten la rehabilitación del paciente. Es importante tener en cuenta que hay dudas acerca de si las prótesis existentes en el mercado suplen las necesidades económicas y de funcionalidad de cada paciente. Con esta investigación se pretende implementar una prótesis transtibial, a fin de mejorar algunas condiciones de la marcha del paciente. Colombia no cuenta con muchas entidades que diseñen y fabriquen los elementos que componen una prótesis. Por tal razón y porque en el SENA, específicamente en el Centro de Diseño y Metrología- CDM, hace aproximadamente cinco años se viene trabajando en el diseño y adaptación de ortesis y prótesis, pero con componentes importados, se quiere diseñar e implementar una articulación de tobillo para amputación transtibial, haciendo uso del recurso humano y tecnológico disponible en el país, y así, poder desarrollar un sistema con manufactura propia y 100 % SENA, que cumpla con las características de funcionalidad y ergonomía para los pacientes con dicha discapacidad. Este artículo científico original recopila la Información más relevante sobre un tema que afecta nuestra sociedad. Aquí se analizan diferentes fuentes bibliográficas descritas en la literatura existente. Con ellas creamos las etapas necesarias para la redacción del artículo definiendo los objetivos de la revisión, haciendo la búsqueda más relevante de la bibliografía y organizando la información de acuerdo con mapas mentales para redactar el artículo.

https://doi.org/10.23850/22565035.887
HTML (English)
XML (English)
PDF (English)

Citas

Adebayo, O., George, L., Marchand, M., Marrion, J., Gielo-Perczak, K., Higgins, L. and Hoffman, A. (2011). Design of a new prosthetic alignment adaptor with quantitative alignment and height adjustment. Bioengineering Conference (NEBEC), 2011 IEEE 37th Annual Northeast, 1-2. doi: https://doi.org/10.1109/NEBC.2011.5778538

Álvarez, R. J. and Ospina, N. J. (2013). Reparacion integral a las víctimas de MAP, MUSE, AEI. Recuperado de http://repository.unimilitar.edu.co/bitstream/10654/3669/2/AlvarezMarquezRafaelJesus2011.pdf

Arotaritei, D., Turnea, M., Filep, R., Ilea, M. and Rotariu, M. (2015). Analyze of Liner Influence in Transtibial Prosthetic taking into account Tribological Aspects. Advanced Topics in Electrical Engineering (ATEE), 2015 9th International Symposium on (pp. 299-302). doi: https://doi.org/10.1109/ATEE.2015.7133784

Au, S. K., Herr, H., Weber, J. & Martínez-Villalpando, E. C. (2007). Powered ankle-foot prosthesis for the improvement of amputee ambulation. In Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 3020–3026. doi: https://doi.org/10.1109/IEMBS.2007.4352965

Au, S. K., Weber, J., Herr, H., Versluys, R., Desomer, A., Lenaerts, G. and Gopura, R.A.R.C.. (2015). System Identification of Human Joint Dynamics. Rehabilitation Robotics (ICORR), 2015 IEEE International Conference, 18(1), 55–87.

Bellman, R. D., Holgate, M. A. and Sugar, T. G. (2008). SPARKy 3: Design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics. Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference, 511-516. doi: https://doi.org/10.1109/BIOROB.2008.4762887

Borrás, C., Gómez, C. and Pinto, W. (2011) (s.f.). Estudio, diseño y construcción biomecánica de un emulador de tobillo articulado para prótesis de miembro inferior. Recuperado de http://www.xixcnim.uji.es/CDActas/Documentos/ComunicacionesOrales/01-21.pdf

Brasil, L. M. and Rosa, S. F. (2011). Desenvolvimento de Prótese Ativa para Amputados Transtibiais Development of an Active Prosthesis for Transtibial Amputees, Health Care Exchanges (PAHCE), 2011 Pan American (pp. 223-224). IEEE.

Bravo, A. M. y Rengifo, F. R. (2014). Modelo biomecánico de una prótesis de pierna. RIAI - Revista Iberoamericana de Automática e Informática Industrial, 11(4), 417–425. doi: https://doi.org/10.1016/j.riai.2014.08.003

Casallas, E. C., Garzón, E. Y. and Luengas, L. A. (2011). Modeling a transtibial prosthesis. Medicine and Education (ITME), 2011 International Symposium 1, 708-712. IEEE. doi https://doi.org/10.1109/ITiME.2011.6130758

Chen, B. and Wang, Q. (2015). Combining human volitional control with intrinsic controller on robotic prosthesis: A case study on adaptive slope walking. Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, 4777–4780. doi: https://doi.org/10.1109/EMBC.2015.7319462

Chen, B., Wang, Q. and Wang, L. (2014). Promise of using surface EMG signals to volitionally control ankle joint position for powered transtibial prostheses. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2545–2548.

Chen, B., Wang, Q. and Wang, L. (2015). Adaptive slope walking with a robotic transtibial prosthesis based on volitional emg control. IEEE/ASME Transactions on Mechatronics, 20(5), 2146–2157. doi: https://doi.org/10.1109/TMECH.2014.2365877

Cherelle, P., Grosu, V., Matthys, A., Vanderborght, B. and Lefeber, D. (2014). Design and validation of the ankle mimicking prosthetic (AMP-) Foot 2.0. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(1), 138–148. doi: https://doi.org/10.1109/TNSRE.2013.2282416

Cherelle, P., Matthys, A., Grosu, V., Vanderborght, B. and Lefeber, D. (2012). The AMP-Foot 2.0: Mimicking intact ankle behavior with a powered transtibial prosthesis. Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference, 544-549.

Colombo, C., Marchesin, E. G., Vergani, L., Boccafogli, E. and Verni, G. (2011). Study of an ankle prosthesis for children: Adaptation of ISO 10328 and experimental tests. Procedia Engineering, 10, 3510–3517. doi: https://doi.org/10.1016/j.proeng.2011.04.578

Comisión Internacional de la Cruz Roja -CICR-(2016). Minas terrestres: legado de la guerra. Recuperado de https://www.icrc.org/es/minas-terrestres-legado-de-la-guerra

Contraloría General de la República. (2012). Primer informe de seguimiento y monitoreo de los entes de control a la Ley 1448 de 2011 de víctimas y restItución de tierras. Bogotá: CGR.

Díaz, A. and Cely, M. M. (2009). Tomografía computarizada en 3D para análisis y diseño de protesis transtibial. Recuperado de http://repositorio.uac.edu.co/bitstream/handle/11619/1362/Tomograf%C3%ADa%20computarizada%20en%203D.pdf?sequence=1&isAllowed=y

Dillon, M. P. and Fatone, S. (2013). Deliberations about the functional benefits and complications of partial foot amputation: do we pay heed to the purported benefits at the expense of minimizing complications? Archives of physical medicine and rehabilitation, 94(8), 1429-1435. doi: https://doi.org/10.1016/j.apmr.2013.03.023

Eilenberg, M. F., Geyer, H. and Herr, H. (2010). Control of a powered ankle-foot prosthesis based on a neuromuscular model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(2), 164–173. doi: https://doi.org/10.1109/TNSRE.2009.2039620

Estupiñán, C. A., Carrillo, A. and Suárez, H. (2007). Diseño y fabricación de una prótesis de pie de respuesta dinámica en fibra de carbono. IV Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions for Latin America Health, 1233-1237. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-540-74471-9_286

Fang, L. D., Jia, X. H., Wang, R. and Suo, S. (2009). Simulation of the Ligament Forces Affected by Prosthetic Alignment in a Trans-tibial Amputee Case Study. Medical Engineering and Physics, 31(7), 793–798. doi: https://doi.org/10.1016/j.medengphy.2009.02.010

Fergason, J., Keeling, J. J. and Bluman, E. M. (2010). Recent Advances in Lower Extremity Amputations and Prosthetics for the Combat Injured Patient. Foot and Ankle Clinics, 15(1), 151–174. doi: https://doi.org/10.1016/j.fcl.2009.10.001

Ferris, A. E., Aldridge, J. M., Rábago, C. A. and Wilken, J. M. (2012). Evaluation of a powered ankle-foot prosthetic system during walking. Archives of Physical Medicine and Rehabilitation, 93(11), 1911–1918. doi: https://doi.org/10.1016/j.apmr.2012.06.009

Gabriel, R. C., Abrantes, J., Granata, K., Bulas-Cruz, J., Melo-Pinto, P. and Filipe, V. (2008). Dynamic joint stiffness of the ankle during walking: Gender-related differences. Physical Therapy in Sport, 9(1), 16–24. doi: https://doi.org/10.1016/j.ptsp.2007.08.002

Hernández-Castillo, A., Álvarez-Camacho, M., and Sánchez-Arévalo, FM. (2013). Protocolo para el análisis funcional de prótesis para pacientes con amputación parcial de pie. Revista Mexicana de Ingeniería Biomédica, 34(1), 97-107.

Hill, D. and Herr, H. (2013). Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: A case series. Rehabilitation Robotics (ICORR), 2013 IEEE International Conference, 1-6. doi: https://doi.org/10.1109/ICORR.2013.6650375

Huang, S., Wensman, J. & Ferris, D. (2016). Locomotor Adaptation by Transtibial Amputees Walking with an Experimental Powered Prosthesis Under Continuous Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(5), 573-581. doi: https://doi.org/10.1109/TNSRE.2015.2441061

Kannape, O. A., Member, I., Herr, H. M., and Member, I. (2014). Volitional Control of Ankle Plantar Flexion in a Powered Transtibial Prosthesis during Stair-Ambulation. Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, 1662-1665. doi: https://doi.org/10.1109/EMBC.2014.6943925

Laferrier, J. Z. and Gailey, R. (2010). Advances in Lower-limb Prosthetic Technology. Physical Medicine and Rehabilitation Clinics of North America, 21(1), 87–110. doi: https://doi.org/10.1016/j.pmr.2009.08.003

Lee Childers, W., Prilutsky, B. I. and Gregor, R. J. (2014). Motor adaptation to prosthetic cycling in people with trans-tibial amputation. Journal of Biomechanics, 47(10), 2306–2313. doi: https://doi.org/10.1016/j.jbiomech.2014.04.037

Lemoyne, R., Mastroianni, T., Hessel, A. and Nishikawa, K. (2015, Novem.). Implementation of machine learning for classifying prosthesis type through conventional gait analysis. Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, 202-205.

Lewis, R. A. (2008, November 11). Miembro fantasma. In D. Pravikoff (Ed.) CINAHL Nursing Guide. Glendale, California: Cinahl Information Systems.

Mancinelli, C., Patritti, B. L., Tropea, P., Greenwald, R. M., Casler, R., Herr, H. and Bonato, P. (2011). Comparing a passive-elastic and a powered prosthesis in transtibial amputees. Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, 8255-8258. doi: https://doi.org/10.1109/IEMBS.2011.6092035

Masum, H., Bhaumik, S. and Ray, R. (2014). Conceptual Design of a Powered Ankle-foot Prosthesis for Walking with Inversion and Eversion. Procedia Technology, 14, 228–235. doi: https://doi.org/10.1016/j.protcy.2014.08.030

Ministerio de Postconflicto Derechos Humanos y Seguridad (2016). Asistencia a víctimas. Bogotá: Direccion para la Atención Integral contra Minas Antipersona, Ministerio de Postconflicto Derechos Humanos y Seguridad.

Ministerio de Salud de Colombia 2015). Guía de práctica clínica. Bogotá: MS.

Molero-Sánchez, A., Molina-Rueda, F., Alguacil-Diego, I. M., Cano-de la Cuerda, R., and Miangolarra-Page, J. C. (2015). Comparison of Stability Limits in Men With Traumatic Transtibial Amputation and a Nonamputee Control Group. PM&R, 7(2), 123–129. doi: https://doi.org/10.1016/j.pmrj.2014.08.953

Morgenroth, D. C., Segal, A. D., Zelik, K. E., Czerniecki, J. M., Klute, G. K., Adamczyk, P. G. and Kuo, A. D. (2011). The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees. Gait & Posture, 34(4), 502–507. doi: https://doi.org/10.1016/j.gaitpost.2011.07.001

Murdoch, G. (1967). Levels of amputation and limiting factors. Annals of the Royal College of Surgeons of England, 40(4), 204.

Raschke, U., Orendurff, S., Mattie, M., Kenyon, J.L., Jones, D. E. A., Moe, D., & Kobayashi, T. (2015). Biomechanical characteristics, patient preference and activity level with different prosthetic feet: A randomized double blind trial with laboratory and community testing. Journal of Biomechanics, 48(1), 146–152. doi: https://doi.org/10.1016/j.jbiomech.2014.10.002

Reyes, C. (2011). La amenaza de las armas pequeñas, ligeras y explosivos ALP-ME. Borradores de Investigación: Serie Documentos Ciencia Política y Gobierno y de Relaciones Internacionales, (1).

Romero, M. A. (2012). Diseño y construcción de una órtesis de rodilla, destinada a la rehabilitación automatizada de la extremidad inferior. Recuperado de dspace.ups.edu.ec/bitstream/123456789/2814/1/UPS-CT002463.pdf

Rubiano, L. F. (2012). Líderes de la comunidad como agentes rehabilitadores “yo, incluso”. Recuperado de http://intellectum.unisabana.edu.co/handle/10818/3487

Rusaw, D. and Ramstrand, N. (2010). Sagittal plane position of the functional joint centre of prosthetic foot/ankle mechanisms. Clinical Biomechanics, 25(7), 713–720. doi: https://doi.org/10.1016/j.clinbiomech.2010.04.005

Sagawa, Y., Turcot, K., Armand, S., Thevenon, A., Vuillerme, N. and Watelain, E. (2011). Biomechanics and physiological parameters during gait in lower-limb amputees: A systematic review. Gait & Posture, 33(4), 511–526. doi: https://doi.org/10.1016/j.gaitpost.2011.02.003

Sanders, J. E., Zachariah, S. G., Baker, A. B., Greve, J. M. and Clinton, C. (2000). Effects of changes in cadence, prosthetic componentry, and time on interface pressures and shear stresses of three trans-tibial amputees. Clinical Biomechanics, 15(9), 684–694. doi: https://doi.org/10.1016/S0268-0033(00)00026-7

Shultz, A. H., Lawson, B. E., and Goldfarb, M. (2016). Variable cadence walking and ground adaptive standing with a powered ankle prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(4), 495-505. doi: https://doi.org/10.1109/TNSRE.2015.2428196

Silverman, A. K. & Neptune, R. R. (2012). Muscle and prosthesis contributions to amputee walking mechanics: A modeling study. Journal of Biomechanics, 45(13), 2271–2278. doi: https://doi.org/10.1016/j.jbiomech.2012.06.008

Sinitski, E. H., Hansen, A. H. and Wilken, J. M. (2012). Biomechanics of the ankle-foot system during stair ambulation: Implications for design of advanced ankle-foot prostheses. Journal of Biomechanics, 45(3), 588–594. doi: https://doi.org/10.1016/j.jbiomech.2011.11.007

Valladares, D. L. (2015). Diseño y modelado virtual del mecanismo policéntrico de una prótesis de rodilla. Recuperado de http://www.dspace.espol.edu.ec/xmlui/handle/123456789/31033?show=full

Wang, H. and Brown, S. (2016, March). The effects of total ankle replacement on ankle joint mechanics during walking. Journal of Sport and Health Science, 1–6.

Wang, Q., Yuan, K., Zhu, J. and Wang, L. (2014). Finite-state control of a robotic transtibial prosthesis with motor-driven nonlinear damping behaviors for level ground walking. Advanced motion control (AMC), 2014 IEEE 13th international workshop, 155-160. doi: https://doi.org/10.1109/AMC.2014.6823274

Wang, Q., Yuan, K., Zhu, J., and Wang, L. (2015). Walk the walk: A lightweight active transtibial prosthesis. IEEE Robotics & Automation Magazine, 22(4), 80-89. doi: https://doi.org/10.1109/MRA.2015.2408791

Yuan, K., Wang, Q. and Wang, L. (2015). Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees. IEEE/ASME Transactions on Mechatronics, 20(2), 618–630. doi: https://doi.org/10.1109/TMECH.2014.2309708

Yuan, K., Wang, Q., Zhu, J., & Wang, L. (2014, June). Motion control of a robotic transtibial prosthesis during transitions between level ground and stairs. IControl Conference (ECC), IEEE, 2014 European, 2040-2045.

Yuan, K., Zhu, J., Wang, Q. and Wang, L. (2011). Finite-state control of powered below-knee prosthesis with ankle and toe. IFAC Proceedings Volumes, 44(1), 2865-2870. doi: https://doi.org/10.3182/20110828-6-IT-1002.03064

Zheng, E. and Wang, Q. (2016). Noncontact Capacitive Sensing Based Locomotion Transition Recognition for Amputees with Robotic Transtibial Prostheses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 4320(c), 1–1.

Descargas

Los datos de descargas todavía no están disponibles.