A review of the different boiler efficiency calculation and modeling methodologies
XML English
PDF English

Palabras clave

mathematical modeling
analytical methods
mechanistic modeling
empirical modeling
review
boiler efficiency modelado matemático
métodos analíticos
modelados mecanicistas
modelados empíricos
revisión
eficiencia en calderas

Cómo citar

Mojica-Cabeza, C. D., García-Sánchez, C. E., Silva-Rodríguez, R., & García-Sánchez, L. (2021). A review of the different boiler efficiency calculation and modeling methodologies. Informador Técnico, 86(1), 69–93. https://doi.org/10.23850/22565035.3697

Resumen

En el presente trabajo se realizó una revisión de las diferentes metodologías matemáticas de cálculo de eficiencia energética en calderas, considerando tanto los métodos incluidos en normas como las diferentes propuestas y aplicaciones publicadas en trabajos investigativos. Se delimitó la clasificación en métodos analíticos, modelados mecanicistas y modelados empíricos. Se exponen las principales ecuaciones para cada una de las metodologías, lo que permite construir una compilación, que se espera que sea de utilidad para una primera aproximación a la temática. Se evidencia que los modelos mecanicistas se emplean para evaluar subsistemas o casos puntuales que requieren alto nivel de detalle, mientras que los modelos analíticos se emplean para realizar una primera aproximación a los sistemas descritos, y los modelos empíricos destacan en cuanto al uso a nivel industrial, siempre y cuando se tenga acceso a una base de datos de partida para ajustarlos.

https://doi.org/10.23850/22565035.3697
XML English
PDF English

Citas

Abubakar, Haruna; Bello, Ademola; Ejilah, Robinson (2020) Development of Mathematical Model of a Utility Boiler Based on Energy and Exergy Analysis. SSRG International Journal of Thermal Engineering (SSRG-IJTE), 6(1), 1-10. https://doi.org/10.14445/23950250/IJTE-V6I1P101

Abroshan, Hamid (2020). An integrated model to study the effects of operational parameters on the performance and pollutant emissions in a utility boiler. Journal of Thermal Engineering, 6(4), 474-498. https://doi.org/10.18186/THERMAL.764157

Amell-Arrieta, Andrés; Vélez-Rueda, Liliana (2003). Análisis comparativo de eficiencias de combustión en un generador de vapor cuando se utiliza gas natural y diesel de caldera. Revista Facultad de Ingeniería (Universidad de Antioquia), 28, 62-75.

American Society Mechanical Engineering (2013). PTC 4-2013 Fired Steam Generators, 2013.

Apaza, Ubaldo; Delgado, Aldo; Garcilazo, Iván; Obregón, Igor (2017). Sistema de Automatización de un Caldero de 30 Bhp para el Mejoramiento de la Eficiencia Energética Utilizando Variables Termodinámicas. Revista Científica Tecnia, 24(1), 5. https://doi.org/10.21754/tecnia.v24i1.26

Bahadori, Alireza; Vuthaluru, Hari (2010). Estimation of energy conservation benefits in excess air-controlled gas-fired systems. Fuel Processing Technology, 91(10), 1198-1203. https://doi.org/10.1016/j.fuproc.2010.03.033

Barma, M. C.; Saidur, R.; Rahman, S. M. A.; Allouhi, A.; Akash, B. A.; Sait, S. M. (2017). A review on boilers energy use, energy savings, and emissions reductions. Renewable and Sustainable Energy Reviews, 79(May), 970-983. https://doi.org/10.1016/j.rser.2017.05.187

Behbahaninia, A.; Ramezani, S.; Lotfi Hejrandoost, M. (2017). A Loss Method for Exergy Auditing of Steam Boilers. Energy, 140(1). 253-260. doi: 10.1016/j.energy.2017.08.090

Bengio, Yoshua; LeCun, Yan (2019). Scaling Learning Algorithms toward AI. In L. Bottou; O. Chapelle; D. DeCoste; J. Weston (Eds.), Large-Scale Kernel Machines (pp. 1-41). MIT Press. https://doi.org/10.7551/mitpress/7496.003.0016

Bujak, Janusz (2008). Mathematical modelling of a steam boiler room to research thermal efficiency. Energy, 33(12), 1779-1787. https://doi.org/10.1016/j.energy.2008.08.004

Chen, Bin; Ye, Xiao; Shen, Jun; Wang, Sha; Deng, Shenxiang; Yang, Jinbiao (2021). Investigations on the energy efficiency limits for industrial boiler operation and technical requirements- taking China's Hunan province as an example. Energy, 220, 119672. https://doi.org/10.1016/j.energy.2020.119672

Dedovic, Nebojsa; Igic, Sasa; Janic, Todor; Matic-Kekic, Snezana; Ponjican, Ondrej; Tomic, Milan; Savin, Lazar (2012). Efficiency of small scale manually fed boilers-mathematical models. Energies, 5(5), 1470-1489. https://doi.org/10.3390/en5051470

de França, Regina; de Oliveira-Júnior, Antônio; de Santana Souza, Domingos (2016). Avaliação de funções robustas para reconciliação de dados em sistemas térmicos. Acta Scientiarum. Technology, 38(2), 185-191. https://doi.org/10.4025/actascitechnol.v38i2.28188

Díez, Luis; Cortés, Cristóbal; Campo, Antonio (2005). Modelling of pulverized coal boilers: Review and validation of on-line simulation techniques. Applied Thermal Engineering, 25(10), 1516-1533. https://doi.org/10.1016/j.applthermaleng.2004.10.003

Ding, Yukun; Liu, Jinlang; Xiong, Jinjun; Jiang, Meng; Shi, Yiyu (2018). Optimizing boiler control in real-time with machine learning for sustainability. In A. Cuzzocrea (Chair), Proceedings from the International Conference on Information and Knowledge Management (pp. 2147-2154). Association for Computing Machinery. https://doi.org/10.1145/3269206.3272024

Dorotić, Hrvoje; Pukšec, Tomislav; Duić, Neven (2020). Analysis of displacing natural gas boiler units in district heating systems by using multi-objective optimization and different taxing approaches. Energy Conversion and Management, 205, 112411. https://doi.org/10.1016/j.enconman.2019.112411

Farhat, Alaa; Zoughaib, Assaad; El Khoury, Khalil (2015). A new methodology combining total site analysis with exergy analysis. Computers and Chemical Engineering, 82, 216-227. https://doi.org/10.1016/j.compchemeng.2015.07.010

Forkman, Johannes ; Josse, Julie; Piepho, Hans-Peter (2019). Hypothesis Tests for Principal Component Analysis When Variables are Standardized. Journal of Agricultural, Biological, and Environmental Statistics, 24(2), 289-308. https://doi.org/10.1007/s13253-019-00355-5

García-Sánchez, Gabriel; Chacón-Velasco, Jorge; Fuentes-Díaz, David; Jaramillo-Ibarra, Julián; Martínez-Morales, Jairo (2020). Modelado CFD de la combustión en calderas de biomasa – Revisión del estado del arte. Respuestas, 25(3), 262-273. https://doi.org/10.22463/0122820X.2462

Granados, Roberto (2016). Modelos de regresión lineal múltiple. Documentos de Trabajo en Economía Aplicada. Universidad de Granada.

Gutiérrez Ortiz, Francisco (2011). Modeling of fire-tube boilers. Applied Thermal Engineering, 31(16), 3463-3478. https://doi.org/10.1016/j.applthermaleng.2011.07.001

Hasini, Hasril; Yusoff, Mohd; Shuaib, Norshah; Boosroh, Mohd; Haniff, Muhammad (2009). Analysis of flow and temperature distribution in a full-scale utility boiler using CFD. In ICEE 2009. Proceedings of the 3rd International Conference on Energy and Environment: Advancement Towards Global Sustainability, 2(December), 208-214. https://doi.org/10.1109/ICEENVIRON.2009.5398646

Irwin, G.; Brown, G.; Hogg, B.; Swidenbank, E. (1995). Neural network modelling of a 200MW boiler system. IEE Proceedings: Control Theory and Applications, 142(6), 529-536. https://doi.org/10.1049/ip-cta:19952293

Ivanitckii, M. S.; Sultanov, M. M.; Kuryanova, E. V. (2021) Development of a mathematical model for evaluating the technical condition of boiler plants in terms of reliability and efficiency. In IEEE 2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE) (pp. 1-4). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/REEPE51337.2021.9388050

Jiménez-Borges, Reiner; Madrigal, José; Lapido, Margarita; Vidal, David (2016). Método para la evaluación de la eficiencia e impacto ambiental de un generador de vapor. Ingeniería Energética, 37(2),135-143.

Kaewboonsong, W.; Kuprianov, V. I. ; Chovichien, N. (2006). Minimizing fuel and environmental costs for a variable-load power plant (co-)firing fuel oil and natural gas. Part 1. Modeling of gaseous emissions from boiler units. Fuel Processing Technology, 87(12), 1085-1094. https://doi.org/10.1016/j.fuproc.2006.08.003

Kær, Søren (2004). Numerical modelling of a straw-fired grate boiler. Fuel, 83(9), 1183-1190. https://doi.org/10.1016/j.fuel.2003.12.003

Kerr, D.; Blair, A. D. (2011). Thermal Power Plant Performance Analysis. Physiotherapy (United Kingdom), 97. https://doi.org/10.1016/j.physio.2011.04.002

Kim, Jongho; Lee, Soonho; Tahmasebi, Arash; Jeon, Chun-Hwan; Yu, Jianglong (2021) A Review of the Numerical Modeling of Pulverized Coal Combustion for High-Efficiency, Low-Emissions (HELE) Power Generation. Energy & Fuels, 35(9), 7434-7466. https://doi.org/10.1021/acs.energyfuels.1c00343

Kljajić, Miroslav; Gvozdenac, Dušan; Vukmirović, Srdjan (2012). Use of Neural Networks for modeling and predicting boiler’s operating performance. Energy, 45(1), 304-311. https://doi.org/10.1016/j.energy.2012.02.067

Lang, Fred (2009). Errors in boiler efficiency standards. In Proceedings of ASME Power Conference (pp. 487-501). American Society of Mechanical Engineers. https://doi.org/10.1115/POWER2009-81221

Lawrence, S.; Giles, C. L.; Tsoi, A. C. (1996). What size neural network gives optimal generalization? Convergence properties of backpropagation (Technical Report UMIACS-TR-96-22 and CS-TR-3617). Institute for Advanced Computer Studies, University of Maryland.

Li, Guoqiang; Niu, Peifeng; Liu, Chao; Zhang, Weiping (2012). Enhanced combination modeling method for combustion efficiency in coal-fired boilers. Applied Soft Computing Journal, 12(10), 3132-3140. https://doi.org/10.1016/j.asoc.2012.06.016

Li, Guoqiang; Niu, Peifeng; Xiao, Xingjun (2012). Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Applied Soft Computing Journal, 12(1), 320-332. https://doi.org/10.1016/j.asoc.2011.08.040

Lozano, M. A.; Valero, A. (1993). Theory of exergetic cost. Energy, 18(9), 939-959.

Maddah, Heydar; Sadeghzadeh, Milad; Ahmadi, Mohammad; Kumar, Ravinder; Shamshirband, Shahaboddin (2019). Modeling and efficiency optimization of steam boilers by employing neural networks and response-surface method (RSM). Mathematics, 7(7). https://doi.org/10.3390/math7070629

Math, Praveen; Chandrakar, Tikendra; Kumar, Santosh; Bhamniya, Jaiprakash; Rinawa, Moti-Lal; Ankit (2021). Experimental and CFD simulation of performance analysis of steam generators of boilers. Materials Today: Proceedings, 46(17), 7049-8894. https://doi.org/10.1016/j.matpr.2021.07.084

Milićević, Aleksandar; Belošević, Srdjan; Crnomarković, Nenad; Tomanović, Ivan; Tucaković, Dragan (2020). Mathematical modelling and optimisation of lignite and wheat straw co-combustion in 350 MW boiler furnace. Applied Energy, 260, 114206. https://doi.org/10.1016/j.apenergy.2019.114206

Modliński, Norbert; Szczepanek, Krzysztof; Nabagło, Daniel; Madejski, Paweł; Modliński, Zbigniew (2019). Mathematical procedure for predicting tube metal temperature in the second stage reheater of the operating flexibly steam boiler. Applied Thermal Engineering, 146, 854-865. https://doi.org/10.1016/j.applthermaleng.2018.10.063

Qu, Ming; Abdelaziz, Omar; Yin, Hongxi (2014). New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement. Energy Conversion and Management, 87, 175-184. https://doi.org/10.1016/j.enconman.2014.06.083

Qin, Na; Li, Rui (2020) Online simplified model and experimental comparison of CFB boiler thermal efficiency. Applied Thermal Engineering, 171, 115021. https://doi.org/10.1016/j.applthermaleng.2020.115021

Rehan, Ahmed; Habib, Mohamed; Elshafei, Moustafa; Alzaharnah, Iyad (2018). Modeling Time Variations of Boiler Efficiency. Journal of Energy Resources Technology, Transactions of the ASME, 140(5), 1-58. https://doi.org/10.1115/1.4038236

Retirado-Mediaceja, Yoalbys; Camaraza-Medina, Yanán; Sánchez-Escalona, Andrés; Laurencio-Alfonso, Héctor; Salazar-Corrales, Marcelo; Zalazar-Oliva, Carlos (2020). Thermo-exergetic assessment of the steam boilers used in a cuban thermoelectric facility. International Journal of Design and Nature and Ecodynamics, 15(3), 291-298. https://doi.org/10.18280/ijdne.150302

Rusinowski, Henryk; Stanek, Wojciech (2007). Neural modelling of steam boilers. Energy Conversion and Management, 48(11), 2802-2809. https://doi.org/10.1016/j.enconman.2007.06.040

Rusinowski, Henryk; Stanek, Wojciech (2010). Hybrid model of steam boiler. Energy, 35(2), 1107-1113. https://doi.org/10.1016/j.energy.2009.06.004

Saha, P. K.; Shoib, Mohammed; Kamruzzaman, J. (1998). Development of a neural network based integrated control system of 120 ton/h capacity boiler. Computers and Electrical Engineering, 24(6), 423-440. https://doi.org/10.1016/S0045-7906(98)00020-2

Sankar, G.; Santhosh-Kumar, D.; Balasubramanian, K. R. (2019) Computational modeling of pulverized coal fired boilers – A review on the current position. Fuel, 236, 643-665. https://doi.org/10.1016/j.fuel.2018.08.154

Savargave, Sangram; Lengare, Madhukar (2017). Self-Adaptive Firefly Algorithm with Neural Network for Design Modelling and Optimization of Boiler Plants. In International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) (pp. 289-293). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/I-SMAC.2017.8058357

Savargave, Sangram; Lengare, Madhukar (2018). Modeling and Optimizing Boiler Design using Neural Network and Firefly Algorithm. Journal of Intelligent Systems, 27(3), 393-412. https://doi.org/10.1515/jisys-2016-0113

Serway, Raymond; Jewett, John (2008). Física para Ciencias e Ingeniería (Vol. 1, 7a ed.). Cengage Learning.

Szega, Marcin (2020). Methodology of advanced data validation and reconciliation application in industrial thermal processes. Energy, 198, 117326. https://doi.org/10.1016/j.energy.2020.117326

Szega, Marcin; Nowak, Grzegorz (2015). An optimization of redundant measurements location for thermal capacity of power unit steam boiler calculations using data reconciliation method. Energy, 92, 135-141. https://doi.org/10.1016/j.energy.2015.03.125

Taler, Jan; Dzierwa, Piotr; Taler, Dawid; Harchut, Piotr (2015). Optimization of the boiler start-up taking into account thermal stresses. Energy, 92, 160-170. https://doi.org/10.1016/j.energy.2015.03.095

Tang, Zhenhao; Li, Yanyan; Kusiak, Andrew (2020). A Deep Learning Model for Measuring Oxygen Content of Boiler Flue Gas. IEEE Access, 8, 12268-12278. https://doi.org/10.1109/ACCESS.2020.2965199

Tarasevich, Maksimilian; Tepljakov, Aleksei; Petlenkov, Eduard; Vansovits, Vitali (2020). Modeling and Identification of an Industrial Hot Water Boiler. In IEEE 2020 43rd International Conference on TSP (pp. 285-290). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/TSP49548.2020.9163503

Tognoli, Marco; Najafi, Behzad; Rinaldi, Fabio (2018). Dynamic modelling and optimal sizing of industrial fire-tube boilers for various demand profiles. Applied Thermal Engineering, 132, 341-351. https://doi.org/10.1016/j.applthermaleng.2017.12.082

Trojan, Marcin (2019). Modeling of a steam boiler operation using the boiler nonlinear mathematical model. Energy, 175, 1194-1208. https://doi.org/10.1016/j.energy.2019.03.160

Unidad de Planeación Minero Energética; Institute for Resource Efficiency and Energy Strategies; TEP Energy; Corpoema (2019). Primer balance de energía útil para Colombia y cuantificación de las pérdidas energéticas relacionadas y la brecha de eficiencia energética. Resumen ejecutivo BEU sector industrial. Unidad de Planeación Minero Energética.

Valencia-Ochoa, Guillermo; Rojas, Jhan; Campos-Avella, Juan. (2019). Energy optimization of industrial steam boiler using energy performance indicator. International Journal of Energy Economics and Policy, 9(6), 109-117. https://doi.org/10.32479/ijeep.8188

Wang, Y. F.; Wang, M. X.; Liu, Y.; Yin, L.; Zhou, X. R.; Xu, J. F.; Zhang, X. Y. (2021). Fuzzy modeling of boiler efficiency in power plants. Information Sciences, 542, 391-405. https://doi.org/10.1016/j.ins.2020.06.064

Whitley, Darrell (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 65-85. https://doi.org/10.1007/BF00175354

Zhang, Ruiqing; Yang, Hairui; Hu, Nan; Lu, Junfu; Wu, Yuxin (2013). Experimental investigation and model validation of the heat flux profile in a 300MW CFB boiler. Powder Technology, 246, 31-40. https://doi.org/10.1016/j.powtec.2013.04.038

Zhang, Yi; Ding, Yanjun; Wu, Zhansong; Kong, Liang; Chou, Tao (2007). Modeling and coordinative optimization of NO x emission and efficiency of utility boilers with neural network. Korean Journal of Chemical Engineering, 24(6), 1118-1123. https://doi.org/10.1007/s11814-007-0131-6

Zhao, Jing; Duan, Yaoqi; Liu, Xiaojuan (2019). Study on the policy of replacing coal-fired boilers with gas-fired boilers for central heating based on the 3E system and the TOPSIS method: A case in Tianjin, China. Energy, 189, 116206. https://doi.org/10.1016/j.energy.2019.116206

Zhitarenko, Volodymyr; Bejan, Volodymyr; Ostapenko, Oleksij (2020). Adaptation of Mathematical Model of Heat and Energy Characteristics of Medium Pressure Boilers to Real Operating Conditions. Technology Audit and Production Reserves, 4(1), 23-30. https://doi.org/10.15587/2706-5448.2020.210540

Zhou, Jinjun; Deng, Song; Turner, Dan; Claridge, David; Haberl, Jeff (2002). Improving boiler efficiency modeling based on ambient air temperature. Proceedings of the Thirteenth Symposium on Improving Building Systems in Hot and Humid Climates, Houston, TX.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2021 Servicio Nacional de Aprendizaje SENA

Descargas

Los datos de descargas todavía no están disponibles.