Evaluación de la degradación ambiental de bolsas plásticas biodegradables
PDF
XML English
HTML
PDF (English)
XML

Palabras clave

plastics
disposable materials
tensile stress
photodegradation
weight loss. plásticos
materiales desechables
resistencia a la tensión
fotodegradación
pérdida de masa

Cómo citar

Castellón Castro, C. A., Tejeda López, L. N., & Tejeda Benítez, L. P. (2016). Evaluación de la degradación ambiental de bolsas plásticas biodegradables. Informador Técnico, 80(1), 24–31. https://doi.org/10.23850/22565035.317

Resumen

Las bolsas plásticas son de uso desechable y se liberan al medio ambiente en cantidades crecientes. Por esta razón muchos fabricantes las están produciendo a base de materiales poliméricos degradables, como por ejemplo, los polihidroxialcanoatos y los polilactatos. En este trabajo se evaluó la degradabilidad por exposición al ambiente de bolsas plásticas declaradas como degradables por sus fabricantes, y se compararon con las convencionales. Se estudiaron tres parámetros como son pérdida de masa, absorción de agua y resistencia mecánica. Los resultados mostraron que las bolsas llamadas degradables presentaron mayor pérdida de masa, mayor absorción de agua, y menor resistencia mecánica antes y después de la exposición al ambiente que las bolsas convencionales, demostrando que las modificaciones químicas realizadas por los fabricantes realmente favorecen su degradación.

https://doi.org/10.23850/22565035.317
PDF
XML English
HTML
PDF (English)
XML

Citas

Abdullah, M., Dan-mallam, Y., Megat Yusoff, P. (2013). Effect of Environmental Degradation on Mechanical Properties of Kenaf/ Polyethylene Terephthalate Fiber Reinforced Polyoxymethylene Hybrid Composite. Advances in Materials Science and Engineering. 8.

https://doi.org/10.1155/2013/671481

Al-Salem, S., Lettieri, P., Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW), a review. Waste Management, 29, 2625–2643.

https://doi.org/10.1016/j.wasman.2009.06.004

ASTM D638 - 14. (2002). Standard Test Method for Tensile Properties of Plastics.

ASTM E104-02. (2012). Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions.

ASTM D 883. (1991). Standard terminology relating to plastics.

Babaee, M., Jonoobi, M., Hamzeh, Y., Ashori, A. (2015). Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers, Carbohydrate Polymers, 132, 1-8.

https://doi.org/10.1016/j.carbpol.2015.06.043

Bajracharya, R., Manaloa, A., Karunasenaa, W., Laua, K. (2016). Characterisation of recycled mixed plastic solid wastes, Coupon and full-scale investigation, Waste Management, 48, 72–80.

https://doi.org/10.1016/j.wasman.2015.11.017

Cole, M., Lindeque, P., Halsband, C., Galloway, T. (2011). Microplastics as contaminants in the marine environment, a review. Marine Pollution Bulletin, 62, 2588–2597.

https://doi.org/10.1016/j.marpolbul.2011.09.025

Department for Environment, Food and Rural Affairs. DEFRA. (2015). Review of standards for biodegradable plastic carrier bags, Reino Unido.

Gómez, E., Michel, F. (2013). Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polymer Degradation and Stability, 98(12), 2583-2591.

https://doi.org/10.1016/j.polymdegradstab.2013.09.018

González, C., Machain, N., Campagna, C. (2015). Legal and institutional tools to mitigate plastic pollution affecting marine species, Argentina as a case study, Marine Pollution Bulletin, 92(1-2), 125-33.

https://doi.org/10.1016/j.marpolbul.2014.12.047

ISO 472 Plastics – vocabulary, amendement 3 (1993). General terms and terms relating to degradable plastics.

Kakroodi, A., Kazemi, Y., Rodrigue, D. (2013) Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: Effect of ground tire rubber addition. Composites Part B: Engineering, 51: 337-344.

https://doi.org/10.1016/j.compositesb.2013.03.032

Kijenska, M., Kowalska, E., Palys, B., Ryczkowski, J. (2010). Degradability of composites of low density polyethylene/polypropylene blends filled with rape straw, Polymer Degradation and Stability, 95(4), 536-542.

https://doi.org/10.1016/j.polymdegradstab.2009.12.023

Krzan, J., Hemjinda, S., Miertus, S., Corti, A., Chiellini, E. (2006). Standardization and certification in the area of environmentally degradable plastics, Polymer Degradation, and Stability, 91(12), 2819–2833.

https://doi.org/10.1016/j.polymdegradstab.2006.04.034

Lee, S., Choe, H., Kim, S., Park, D., Nasir, A., Kim, B., Kim, K. (2016). Complete genome of biodegradable plastics-decomposing Roseateles depolymerans KCTC 42856(T) (=61A(T)), Journal of Biotechnology, 220, 47-8.

https://doi.org/10.1016/j.jbiotec.2016.01.012

Moore, C. (2008). Synthetic polymers in the marine environment, a rapidly increasing, long-term threat, Environmental Research, 108, 131–139.

https://doi.org/10.1016/j.envres.2008.07.025

Qian, J., Ma, J., Su, J., Yan, Y., Li, H., Shin, J., Wei, J., Zhao, L. (2016). PHBV-based ternary composite by intermixing of magnesium calcium phosphate nanoparticles and zein, In vitro bioactivity, degradability and cytocompatibility. European Polymer Journal. 75, 291–302.

https://doi.org/10.1016/j.eurpolymj.2015.12.026

Siddique, R., Khatib, J., Kaur, I. (2008). Use of recycled plastic in concrete, a review, Waste Management, 28, 1835–1852.

https://doi.org/10.1016/j.wasman.2007.09.011

Suhrhoff, T., Scholz-Böttcher, B. (2016). Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics - A lab experiment, Marine Pollution Bulletin. 102(1), 84-94.

https://doi.org/10.1016/j.marpolbul.2015.11.054

Torres-Huerta, A., Palma-Ramírez, D., Domínguez- Crespo, M., Del Ángel-López, D., De La Fuente, D. (2014). Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends, European Polymer Journal, 61, 285-299.

https://doi.org/10.1016/j.eurpolymj.2014.10.016

Weiss, M., Haufe, J., Carus, M., Brandão, M., Bringezu, S., Hermann, B. (2012). A review of the environmental impacts of biobased materials, Journal of Industrial Ecology, 16, S169–S181.

https://doi.org/10.1111/j.1530-9290.2012.00468.x

Wu, H., Wen, B., Zhou, H, Zhou, J., Yu, Z., Cui, L., Huang, T., Cao, F. (2015). Synthesis and degradability of copolyesters of 2, 5-furandicarboxylic acid, lactic acid, and ethylene glycol, Polymer Degradation and Stability, 121, 100-104.

https://doi.org/10.1016/j.polymdegradstab.2015.08.009

Yabannavar, A., Bartha, R. (1994). Methods for Assessment of Biodegradability of Plastic Films in Soil, Applied Environmental Microbiology, 60(10),3608–3614.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2019 Servicio Nacional de Aprendizaje (SENA)

Descargas

Los datos de descargas todavía no están disponibles.