Informador Técnico
ISSN: 2256-5035 (Electrónico)
ISSN: 0122-056X (Impreso)
Formato: Electrónico / Acceso Abierto
Frecuencia: Números Semestrales
Revisión por Pares: Doble Ciego
Las bolsas plásticas son de uso desechable y se liberan al medio ambiente en cantidades crecientes. Por esta razón muchos fabricantes las están produciendo a base de materiales poliméricos degradables, como por ejemplo, los polihidroxialcanoatos y los polilactatos. En este trabajo se evaluó la degradabilidad por exposición al ambiente de bolsas plásticas declaradas como degradables por sus fabricantes, y se compararon con las convencionales. Se estudiaron tres parámetros como son pérdida de masa, absorción de agua y resistencia mecánica. Los resultados mostraron que las bolsas llamadas degradables presentaron mayor pérdida de masa, mayor absorción de agua, y menor resistencia mecánica antes y después de la exposición al ambiente que las bolsas convencionales, demostrando que las modificaciones químicas realizadas por los fabricantes realmente favorecen su degradación.
Abdullah, M., Dan-mallam, Y., Megat Yusoff, P. (2013). Effect of Environmental Degradation on Mechanical Properties of Kenaf/ Polyethylene Terephthalate Fiber Reinforced Polyoxymethylene Hybrid Composite. Advances in Materials Science and Engineering. 8.
https://doi.org/10.1155/2013/671481
Al-Salem, S., Lettieri, P., Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW), a review. Waste Management, 29, 2625–2643.
https://doi.org/10.1016/j.wasman.2009.06.004
ASTM D638 - 14. (2002). Standard Test Method for Tensile Properties of Plastics.
ASTM E104-02. (2012). Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions.
ASTM D 883. (1991). Standard terminology relating to plastics.
Babaee, M., Jonoobi, M., Hamzeh, Y., Ashori, A. (2015). Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers, Carbohydrate Polymers, 132, 1-8.
https://doi.org/10.1016/j.carbpol.2015.06.043
Bajracharya, R., Manaloa, A., Karunasenaa, W., Laua, K. (2016). Characterisation of recycled mixed plastic solid wastes, Coupon and full-scale investigation, Waste Management, 48, 72–80.
https://doi.org/10.1016/j.wasman.2015.11.017
Cole, M., Lindeque, P., Halsband, C., Galloway, T. (2011). Microplastics as contaminants in the marine environment, a review. Marine Pollution Bulletin, 62, 2588–2597.
https://doi.org/10.1016/j.marpolbul.2011.09.025
Department for Environment, Food and Rural Affairs. DEFRA. (2015). Review of standards for biodegradable plastic carrier bags, Reino Unido.
Gómez, E., Michel, F. (2013). Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polymer Degradation and Stability, 98(12), 2583-2591.
https://doi.org/10.1016/j.polymdegradstab.2013.09.018
González, C., Machain, N., Campagna, C. (2015). Legal and institutional tools to mitigate plastic pollution affecting marine species, Argentina as a case study, Marine Pollution Bulletin, 92(1-2), 125-33.
https://doi.org/10.1016/j.marpolbul.2014.12.047
ISO 472 Plastics – vocabulary, amendement 3 (1993). General terms and terms relating to degradable plastics.
Kakroodi, A., Kazemi, Y., Rodrigue, D. (2013) Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: Effect of ground tire rubber addition. Composites Part B: Engineering, 51: 337-344.
https://doi.org/10.1016/j.compositesb.2013.03.032
Kijenska, M., Kowalska, E., Palys, B., Ryczkowski, J. (2010). Degradability of composites of low density polyethylene/polypropylene blends filled with rape straw, Polymer Degradation and Stability, 95(4), 536-542.
https://doi.org/10.1016/j.polymdegradstab.2009.12.023
Krzan, J., Hemjinda, S., Miertus, S., Corti, A., Chiellini, E. (2006). Standardization and certification in the area of environmentally degradable plastics, Polymer Degradation, and Stability, 91(12), 2819–2833.
https://doi.org/10.1016/j.polymdegradstab.2006.04.034
Lee, S., Choe, H., Kim, S., Park, D., Nasir, A., Kim, B., Kim, K. (2016). Complete genome of biodegradable plastics-decomposing Roseateles depolymerans KCTC 42856(T) (=61A(T)), Journal of Biotechnology, 220, 47-8.
https://doi.org/10.1016/j.jbiotec.2016.01.012
Moore, C. (2008). Synthetic polymers in the marine environment, a rapidly increasing, long-term threat, Environmental Research, 108, 131–139.
https://doi.org/10.1016/j.envres.2008.07.025
Qian, J., Ma, J., Su, J., Yan, Y., Li, H., Shin, J., Wei, J., Zhao, L. (2016). PHBV-based ternary composite by intermixing of magnesium calcium phosphate nanoparticles and zein, In vitro bioactivity, degradability and cytocompatibility. European Polymer Journal. 75, 291–302.
https://doi.org/10.1016/j.eurpolymj.2015.12.026
Siddique, R., Khatib, J., Kaur, I. (2008). Use of recycled plastic in concrete, a review, Waste Management, 28, 1835–1852.
https://doi.org/10.1016/j.wasman.2007.09.011
Suhrhoff, T., Scholz-Böttcher, B. (2016). Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics - A lab experiment, Marine Pollution Bulletin. 102(1), 84-94.
https://doi.org/10.1016/j.marpolbul.2015.11.054
Torres-Huerta, A., Palma-Ramírez, D., Domínguez- Crespo, M., Del Ángel-López, D., De La Fuente, D. (2014). Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends, European Polymer Journal, 61, 285-299.
https://doi.org/10.1016/j.eurpolymj.2014.10.016
Weiss, M., Haufe, J., Carus, M., Brandão, M., Bringezu, S., Hermann, B. (2012). A review of the environmental impacts of biobased materials, Journal of Industrial Ecology, 16, S169–S181.
https://doi.org/10.1111/j.1530-9290.2012.00468.x
Wu, H., Wen, B., Zhou, H, Zhou, J., Yu, Z., Cui, L., Huang, T., Cao, F. (2015). Synthesis and degradability of copolyesters of 2, 5-furandicarboxylic acid, lactic acid, and ethylene glycol, Polymer Degradation and Stability, 121, 100-104.
https://doi.org/10.1016/j.polymdegradstab.2015.08.009
Yabannavar, A., Bartha, R. (1994). Methods for Assessment of Biodegradability of Plastic Films in Soil, Applied Environmental Microbiology, 60(10),3608–3614.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2019 Servicio Nacional de Aprendizaje (SENA)