Obtención polihidroxialcanoatos (PHA) a partir de biomasa lignocelulósica: un estudio de revisión
XML
PDF
PDF (English)
XML (English)

Palabras clave

polihidroxialcanoatos
PHA
Ralstonia eutropha
sacarificación
fermentación
pretratamiento
azúcares PHA
Ralstonia eutropha
saccharification
fermentation
pretreatment
sugars
polyhydroxyalkanoates

Cómo citar

Guancha, M. A., Realpe-Delgado, M. E., & García-Celis, J. (2021). Obtención polihidroxialcanoatos (PHA) a partir de biomasa lignocelulósica: un estudio de revisión . Informador Técnico, 86(1), 111–135. https://doi.org/10.23850/22565035.3692

Resumen

Los polihidroxialcanoatos (PHA) son considerados polímeros biodegradables que se obtienen por fermentación microbiana, a partir de diferentes sustratos principalmente azúcares, los cuales se sintetizan de diversas fuentes naturales. Una alternativa es la obtención a partir de biomasa lignocelulósica. Por lo anterior, este documento presenta una recopilación de investigaciones relacionadas con métodos utilizados para el pretratamiento, sacarificación, su posterior conversión a PHA y el proceso final de extracción y caracterización, aplicados para su identificación. En cuanto a los métodos de pretratamiento, se encontró que el proceso hidrotermal y la aplicación de ultrasonido (US) combinado con agentes químicos ácidos o alcalinos son los más utilizados para eliminar inhibidores, principalmente lignina y sus derivados. El pretratamiento hidrotermal se presenta como un método promisorio bajo el concepto de biorrefinería, debido a que se requieren tiempos cortos de tratamiento, y a la facilidad de recuperación de subproductos. En el proceso de sacarificación se evidenció que el método enzimático con celulasa combinada, en algunos casos con β-glucosidasa, es el más reportado. En relación con el proceso fermentativo, a partir de hidrolizados de residuos lignocelulósicos como paja de arroz, trigo, kenaf entre otros, la cepa Ralstonia eutropha es la más utilizada para la síntesis de poli(3-hidroxibutirato) (PHB). Se encontró que las variables que más influyen en el rendimiento del proceso fermentativo son la relación C/N, concentración de la fuente del sustrato (concentración de hidrolizados), la oxigenación y la presencia de inhibidores, que son subproductos formados durante el proceso de pretratamiento de la biomasa.

https://doi.org/10.23850/22565035.3692
XML
PDF
PDF (English)
XML (English)

Citas

Acosta, Alejandro; Alcaraz, Wilman; Cardona, Mariana (2018). Sugarcane molasses and vinasse as a substrate for polyhydroxyalkanoates (PHA) production. Revista Dyna, 85(206), 220-225. https://doi.org/https://doi.org/10.15446/dyna.v85n206.68279

Adeleye, Aderemi; Kenneth, Chuks; Christian, Obieze; Oluwabunmi, Oluwakemi; Oludare, Osigbeminiyi; Toluwalope, Emmanuel; Louis, Hitler (2020). Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochemistry, 96(marzo), 174-193. https://doi.org/10.1016/j.procbio.2020.05.032

Alsafadi, Diya; Al-Mashaqbeh, Othman (2017). A one-stage cultivation process for the production of poly-3-(hydroxybutyrate- co - hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnology, 34, 47-53. https://doi.org/10.1016/j.nbt.2016.05.003

Amaro, Gustavo; Barreto, Elisa; Lopes, Rogelio; Eduardo, Bruno; Vinícius, Leandro (2019). Fractionation of sugarcane bagasse using hydrothermal and advanced oxidative pretreatments for bioethanol and biogas production in lignocellulose biorefineries. Bioresource Technology, 292(agosto), 121963. https://doi.org/10.1016/j.biortech.2019.121963

Amini, Malihe; Yousefi-Massumabad, Hassan; Younesi, Habibollah; Abyar, Hajar; Bahramifar, Nader (2020). Production of the polyhydroxyalkanoate biopolymer by Cupriavidus necator using beer brewery wastewater containing maltose as a primary carbon source. Journal of Environmental Chemical Engineering, 8(1), 1-9. https://doi.org/10.1016/j.jece.2019.103588

Anjum, Anbreen; Zuber, Mohammad; Zia, Khalid; Noreen, Aqdas; Anjum, Muhammad; Tabasum, Shazia (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 89, 161-174. https://doi.org/10.1016/j.ijbiomac.2016.04.069

Annamalai, Neelamegam; Sivakumar, Nallusamy (2016). Production of polyhydroxybutyrate from wheat bran hydrolysate using Ralstonia eutropha through microbial fermentation. Journal of Biotechnology, 237, 13-17. https://doi.org/10.1016/j.jbiotec.2016.09.001

Arikawa, Hisashi; Sato, Shunsuke; Fujiki, Tetsuya; Matsumoto, Keiji (2017). Simple and rapid method for isolation and quantitation of polyhydroxyalkanoate by SDS-sonication treatment. Journal of Bioscience and Bioengineering, 124(2), 250-254. https://doi.org/10.1016/j.jbiosc.2017.03.003

Capolupo, Laura; Faraco, Vicenza (2016). Green methods of lignocellulose pretreatment for biorefinery development. Applied Microbiology and Biotechnology, 100, 9451-9467. https://doi.org/10.1007/s00253-016-7884-y

Chanprateep, Suchada; Katakura, Yoshio; Visetkoop, Sirirat; Shimizu, Hiroshi; Kulpreecha, Songsri; Shioya, Suteaki (2008). Characterization of new isolated Ralstonia eutropha strain A-04 and kinetic study of biodegradable copolyester poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production. Journal of Industrial Microbiology and Biotechnology, 35(11), 1205-1215. https://doi.org/10.1007/s10295-008-0427-5

Dattatraya, Ganesh; Ganesh, Rijuta; Varjani, Sunita; Cho, Si-Kyung; Ghodake, Gajanan; Kadam, Avinash; Mulla, Sikandar; Naresh, Ram; Kim, Dong-Su; Seung, Han (2020). Development of ultrasound aided chemical pretreatment methods to enrich saccharifi cation of wheat waste biomass for polyhydroxybutyrate production and its characterization. Industrial Crops & Products, 150, 1-13. https://doi.org/10.1016/j.indcrop.2020.112425

De Bhowmick, Goldy; Sarmah, Ajit; Sen, Ramkrishna (2018). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology, 247, 1144-1154. https://doi.org/10.1016/j.biortech.2017.09.163

De Souza, Larissa; Manasa, Y.; Shivakumar, Srividya (2020). Biocatalysis and Agricultural Biotechnology Bioconversion of lignocellulosic substrates for the production of polyhydroxyalkanoates. Biocatalysis and Agricultural Biotechnology, 28(julio), 101754. https://doi.org/10.1016/j.bcab.2020.101754

Dey, Pinaki; Rangarajan, Vivek (2017). Improved fed-batch production of high-purity PHB ( poly-3 hydroxy butyrate ) by Cupriavidus necator ( MTCC 1472 ) from sucrose-based cheap substrates under response surface- optimized conditions. 3 Biotech, 310(7), 1-14. https://doi.org/10.1007/s13205-017-0948-6

Favaro, Lorenzo; Basaglia, Marina; Casella, Sergio (2019). Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review. Biofuels, Bioproducts and Biorefining, 13(1), 208-227. https://doi.org/10.1002/bbb.1944

Gabhane, Jagdish; Kumar, Sachin; Sarma, A. K. (2020). Effect of glycerol thermal and hydrothermal pretreatments on lignin degradation and enzymatic hydrolysis in paddy straw. Renewable Energy, 154, 1304-1313. https://doi.org/10.1016/j.renene.2020.03.035

Galbe, Mats; Wallberg, Ola (2019). Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnology for Biofuels, 12(294), 1-26. https://doi.org/10.1186/s13068-019-1634-1

Ganesh, Rijuta; Dattatraya, Ganesh; Kyung, SI; Su, Dong; Ghodake, Gajanan; Kadam, Avinash; Kumar, Gopalakrishanan; Naresh, Ram (2019). Pretreatment of kenaf (Hibiscus cannabinus L .) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization. Bioresource Technology, 282, 75-80. https://doi.org/10.1016/j.biortech.2019.02.083

García, L.; Novoa, J.; Franco, A.; Higuita, L. (2015). Estudio de la síntesis de biopolímeros de origen microbiano. Revista QUID, 25, 69-78.

González, Y.; Meza, J.; González, O.; Córdoba, J. (2013). Síntesis y biodegradación de polihidroxialcanoatos: plásticos de origen microbiano. Revista Internacional de Contaminación Ambiental, 29(1), 77-115.

Govil, Tanvi; Wang, Jia; Samanta, Dipayan; David, Aditi;Tripathi, Abhilash; Rauniyar, Shailabh; Salem, David; Sani, Rajesh (2020). Lignocellulosic feedstock: A review of a sustainable platform for cleaner production of nature’s plastics. Journal of Cleaner Production, 270, 1-19. https://doi.org/10.1016/j.jclepro.2020.122521

Heinrich, Daniel; Madkour, Mohamed; Al-Ghamdi, Mansour; Shabbaj, Ibraheem; Steinbüchel, Alexander (2012). Large scale extraction of poly ( 3-hydroxybutyrate ) from Ralstonia eutropha H16 using sodium hypochlorite. AMB Express, 2(59), 1-6. https://doi.org/10.1186/2191-0855-2-59

Hermann, Carmen; Koller, Martin; Muhr, Alexander; Fasl, Hubert; Stelzer, Franz; Braunegg, Gerhart (2013). Archaeal Production of Polyhydroxyalkanoate (PHA) Co- and Terpolyesters from Biodiesel Industry-Derived By-Products. Hindawi, 2013, 1-10. https://doi.org/10.1155/2013/129268

Isak, I.; Patel, M.; Riddell, M.; West, M.; Bowers, T.; Wijeyekoon, S.; Lloyd, J. (2016). Quantification of polyhydroxyalkanoates in mixed and pure cultures biomass by Fourier transform infrared spectroscopy : comparison of different approaches. Letters in Applied Microbiology, 63(2), 139-146. https://doi.org/10.1111/lam.12605

Islam, Salatul; de Wever, Heileen; Volcke, Eveline; Garcia-Gonzalez, Linsey (2014). A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochemistry, 49(3), 365-373. https://doi.org/10.1016/j.procbio.2013.12.004

Jonsson, Leif; Alriksson, Björn; Nilvebrant, Nils-Olof (2013). Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 6(16), 1-10. https://doi.org/10.1186/1754-6834-6-16

Kant, Shashi; Gurav, Ranjit; Choi, Tae-Rim; Jung, Hye-Rim; Yang, Yun-Hun (2019). Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresource Technology, 271, 306-315. https://doi.org/10.1016/j.biortech.2018.09.122

Kaur, Kamalpreet; Espirito, Melissa; Pellegrini, Vanessa; de Azevedo, Eduardo; Guimaraes, Francisco; Polikarpov, Igor (2020). Biomass and Bioenergy Enhanced hydrolysis of hydrothermally and autohydrolytically treated sugarcane bagasse and understanding the structural changes leading to improved saccharification. Biomass and Bioenergy, 139, 105639. https://doi.org/10.1016/j.biombioe.2020.105639

Kerketta, Ankush; Vasanth, D. (2019). Madhuca indica flower extract as cheaper carbon source for production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) using Ralstonia eutropha. Process Biochemistry, 87, 1-9. https://doi.org/10.1016/j.procbio.2019.09.013

Koller, Martin (2018). A review on established and emerging fermentation schemes for microbial production of polyhydroxyalkanoate (PHA) biopolyesters. Fermentation, 4(20), 1-30. https://doi.org/10.3390/fermentation4020030

Kumar, Manish; Rathour, Rashmi; Singh, Rashmi; Sun, Yaquing; Pandey, Ashok; Gnansounou, Edgard; Lin, Kun-Yi; Tsang, Daniel; Shekhar, Indu (2020). Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. Journal of Cleaner Production, 263, 1-20. https://doi.org/10.1016/j.jclepro.2020.121500

Li, Mengxing; Wilkins, Mark (2020). Recent advances in polyhydroxyalkanoate production : Feedstocks , strains and process developments. International Journal of Biological Macromolecules, 156, 691-703. https://doi.org/10.1016/j.ijbiomac.2020.04.082

Liu, C.; Zhang, L.; An, J.; Chen, B.; Yang, H. (2015). Recent strategies for efficient production of polyhydroxyalkanoates by micro-organisms. Letters in Applied Microbiology, 1558, 9-15. https://doi.org/10.1111/lam.12511

López, L.; Acosta, A.; Zambrano, R. (2013). Evaluación de pretratamientos químicos para la hidrólisis enzimática de residuos lignocelulósicos de yuca (Manihot esculenta Crantz). Revista Facultad Ingenieria Universidad de Antioquia, 69, 317-326.

Madeiros-Garcia, João; Distante, Franceso; Storti, Giuseppe; Moscatelli, Davide; Morbidelli, Massimo; Sponchioni, Mattia (2020). Current trends in the production of biodegradable bioplastics: The case of polyhydroxyalkanoates. Biotechnology Advances, 42, 1-9. https://doi.org/10.1016/j.biotechadv.2020.107582

Nath, A.; Dixit, M.; Bandiya, A.; Chavda, S.; Desai, A. J. (2008). Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. 99. Bioresource Technology, 99(13), 5749-5755. https://doi.org/10.1016/j.biortech.2007.10.017

Pakalapati, Harshini; Chang, Chi-Kai; Show, Pau; Arumugasamy, Senthil; Lan, John (2018). Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126(3), 282-292. https://doi.org/10.1016/j.jbiosc.2018.03.016

Plastic Market Size (2020). Plastics Polymers & Resins. https://www.fortunebusinessinsights.com/plastics-market-102176

Ranganathan, Saranya; Dutta, Sayantani; Moses, J. A.; Anandharamakrishnan, C. (2020). Utilization of food waste streams for the production of biopolymers. Heliyon, 6(9), 1-13. https://doi.org/10.1016/j.heliyon.2020.e04891

Raposo, Rodrigo; Cesário,Teresa; Almeida, Catarina; van Keulen, Frederik; Ferreira, Bruno; de Fonseca, Manuela R. (2014). Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnology, 31(1), 104-113. https://doi.org/10.1016/j.nbt.2013.10.004

Raza, Zulfiqar; Abid, Sharjeel; Banat, Ibrahim (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126, 45-56. https://doi.org/10.1016/j.ibiod.2017.10.001

Report European Bioplastic (2017). Bioplastic market data 2017. http://docs.european-bioplastics.org/publications/market_data/2017/Report_Bioplastics_Market_Data_2017.pdf

Rojas, E.; Hoyos, J.; Mosquera, S. (2016). Producción de polihidroxialcanoatos (PHAs) a partir de Ralstonia eutropha en un medio con harina de yuca como fuente de carbono. Biotecnología en el Sector Agripecuario y Agroindustrial, 14(1), 19-26.

Ruiz, Héctor; Rodríguez, Rosa; Fernandes, Bruno; Vicente, António; Teixeira, José (2013). Hydrothermal processing , as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept : A review. Renewable and Sustainable Energy Reviews, 21, 35-51. https://doi.org/10.1016/j.rser.2012.11.069

Ruiz, Héctor; Conrad, Marc; Sun, Shao-Ni; Sánchez, Arturo; Rocha, George; Romaní, Aloia; Castro, Eulogio; Torres, Ana; ... Meyer, Anne (2020). Engineering aspects of hydrothermal pretreatment : From batch to continuous operation , scale-up and pilot reactor under biorefinery concept. Bioresource Technology, 299, 1-16. https://doi.org/10.1016/j.biortech.2019.122685

Sabapathy, Poorna; Devaraj, Sabarinathan; Meixner, Katharina; Anburajan, Parthiban; Kathirvel, Preethi; Ravikumar, Yuvaraj; Zabed, Hossain; Qi, Xianghui (2020). Recent developments in Polyhydroxyalkanoates (PHAs) production - A review. Bioresource Technology, 306, 1-14. https://doi.org/10.1016/j.biortech.2020.123132

Saratale, Ganesh; Oh, Min-Kyu (2015). Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. International Journal of Biological Macromolecules, 80, 627-635. https://doi.org/10.1016/j.ijbiomac.2015.07.034

Saratale, Ganesh; Saratale, Rijuta; Varjani, Sunita; Cho, Si-Kyung; Ghodake, Gajanan; Kadam, Avinash; Mulla, Sikandar; ...Shin, Han (2020). Development of ultrasound aided chemical pretreatment methods to enrich saccharification of wheat waste biomass for polyhydroxybutyrate production and its characterization. Industrial Crops and Products, 150, 1-13. https://doi.org/10.1016/j.indcrop.2020.112425

Schmid, Maximilian; Raschbauer, Michaela; Song, Hyunjeong ; Bauer, Cornelia; Neureiter, Markus (2021). Effects of nutrient and oxygen limitation, salinity and type of salt on the accumulation of poly(3-hydroxybutyrate) in Bacillus megaterium uyuni S29 with sucrose as a carbon source. New Biotechnology, 61, 137-144. https://doi.org/10.1016/j.nbt.2020.11.012

Shahid, Salma; Razzaq, Sadia; Farooq, Robina; Nazli, Zill-i-Huma (2021). Polyhydroxyalkanoates: Next generation natural biomolecules and a solution for the world’s future economy. International Journal of Biological Macromolecules, 166, 297-321. https://doi.org/10.1016/j.ijbiomac.2020.10.187

Sultana, Naznin; Khan, Tareef (2012). In vitro degradation of PHBV scaffolds and nHA/PHBV composite scaffolds containing hydroxyapatite nanoparticles for bone tissue engineering. Journal of Nanomaterials, 2012, 1-12. https://doi.org/10.1155/2012/190950

Utsunomia, Camila; Ren, Qun; Zinn, Manfred (2020). Poly(4-Hydroxybutyrate): Current State and Perspectives. Frontiers in Bioengineering and Biotechnology, 8(257), 1-20. https://doi.org/10.3389/fbioe.2020.00257

Velmurugan, Rajendran; Muthukumar, Karuppan (2012). Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production : Optimization through response surface methodology. Bioresource Technology, 112, 293-299. https://doi.org/10.1016/j.biortech.2012.01.168

Vu, Hang; Nguyen, Luong; Vu, Mihn; Johir, Abu; McLaughlan, Robert; Nghiem, Long (2020). A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Science of the Total Environment, 743, 1-16. https://doi.org/10.1016/j.scitotenv.2020.140630

Wu, Han; Dai, Xiao; Zhou, Si-Li; Gan, Yu-Yan; Xiong, Zi-Yao; Qin, Yuan-Hang; Ma, Jiayu; …Wang, Cun-Wen (2017). Ultrasound-assisted alkaline pretreatment for enhancing the enzymatic hydrolysis of rice straw by using the heat energy dissipated from ultrasonication. Bioresource Technology, 241, 70-74. https://doi.org/10.1016/j.biortech.2017.05.090

Yang, Bin; Tao, Ling; Wayman, Charles (2018). Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining, 12, 125-138. https://doi.org/10.1002/bbb.1825

Yu, Jian; Stahl, Heiko (2008). Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresource Technology, 99(17), 8042-8048. https://doi.org/10.1016/j.biortech.2008.03.071

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2021 Servicio Nacional de Aprendizaje SENA

Descargas

Los datos de descargas todavía no están disponibles.