Informador Técnico
ISSN: 2256-5035 (Electrónico)
ISSN: 0122-056X (Impreso)
Formato: Electrónico / Acceso Abierto
Frecuencia: Números Semestrales
Revisión por Pares: Doble Ciego
Los polihidroxialcanoatos (PHA) son considerados polímeros biodegradables que se obtienen por fermentación microbiana, a partir de diferentes sustratos principalmente azúcares, los cuales se sintetizan de diversas fuentes naturales. Una alternativa es la obtención a partir de biomasa lignocelulósica. Por lo anterior, este documento presenta una recopilación de investigaciones relacionadas con métodos utilizados para el pretratamiento, sacarificación, su posterior conversión a PHA y el proceso final de extracción y caracterización, aplicados para su identificación. En cuanto a los métodos de pretratamiento, se encontró que el proceso hidrotermal y la aplicación de ultrasonido (US) combinado con agentes químicos ácidos o alcalinos son los más utilizados para eliminar inhibidores, principalmente lignina y sus derivados. El pretratamiento hidrotermal se presenta como un método promisorio bajo el concepto de biorrefinería, debido a que se requieren tiempos cortos de tratamiento, y a la facilidad de recuperación de subproductos. En el proceso de sacarificación se evidenció que el método enzimático con celulasa combinada, en algunos casos con β-glucosidasa, es el más reportado. En relación con el proceso fermentativo, a partir de hidrolizados de residuos lignocelulósicos como paja de arroz, trigo, kenaf entre otros, la cepa Ralstonia eutropha es la más utilizada para la síntesis de poli(3-hidroxibutirato) (PHB). Se encontró que las variables que más influyen en el rendimiento del proceso fermentativo son la relación C/N, concentración de la fuente del sustrato (concentración de hidrolizados), la oxigenación y la presencia de inhibidores, que son subproductos formados durante el proceso de pretratamiento de la biomasa.
Acosta, Alejandro; Alcaraz, Wilman; Cardona, Mariana (2018). Sugarcane molasses and vinasse as a substrate for polyhydroxyalkanoates (PHA) production. Revista Dyna, 85(206), 220-225. https://doi.org/https://doi.org/10.15446/dyna.v85n206.68279
Adeleye, Aderemi; Kenneth, Chuks; Christian, Obieze; Oluwabunmi, Oluwakemi; Oludare, Osigbeminiyi; Toluwalope, Emmanuel; Louis, Hitler (2020). Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochemistry, 96(marzo), 174-193. https://doi.org/10.1016/j.procbio.2020.05.032
Alsafadi, Diya; Al-Mashaqbeh, Othman (2017). A one-stage cultivation process for the production of poly-3-(hydroxybutyrate- co - hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnology, 34, 47-53. https://doi.org/10.1016/j.nbt.2016.05.003
Amaro, Gustavo; Barreto, Elisa; Lopes, Rogelio; Eduardo, Bruno; Vinícius, Leandro (2019). Fractionation of sugarcane bagasse using hydrothermal and advanced oxidative pretreatments for bioethanol and biogas production in lignocellulose biorefineries. Bioresource Technology, 292(agosto), 121963. https://doi.org/10.1016/j.biortech.2019.121963
Amini, Malihe; Yousefi-Massumabad, Hassan; Younesi, Habibollah; Abyar, Hajar; Bahramifar, Nader (2020). Production of the polyhydroxyalkanoate biopolymer by Cupriavidus necator using beer brewery wastewater containing maltose as a primary carbon source. Journal of Environmental Chemical Engineering, 8(1), 1-9. https://doi.org/10.1016/j.jece.2019.103588
Anjum, Anbreen; Zuber, Mohammad; Zia, Khalid; Noreen, Aqdas; Anjum, Muhammad; Tabasum, Shazia (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 89, 161-174. https://doi.org/10.1016/j.ijbiomac.2016.04.069
Annamalai, Neelamegam; Sivakumar, Nallusamy (2016). Production of polyhydroxybutyrate from wheat bran hydrolysate using Ralstonia eutropha through microbial fermentation. Journal of Biotechnology, 237, 13-17. https://doi.org/10.1016/j.jbiotec.2016.09.001
Arikawa, Hisashi; Sato, Shunsuke; Fujiki, Tetsuya; Matsumoto, Keiji (2017). Simple and rapid method for isolation and quantitation of polyhydroxyalkanoate by SDS-sonication treatment. Journal of Bioscience and Bioengineering, 124(2), 250-254. https://doi.org/10.1016/j.jbiosc.2017.03.003
Capolupo, Laura; Faraco, Vicenza (2016). Green methods of lignocellulose pretreatment for biorefinery development. Applied Microbiology and Biotechnology, 100, 9451-9467. https://doi.org/10.1007/s00253-016-7884-y
Chanprateep, Suchada; Katakura, Yoshio; Visetkoop, Sirirat; Shimizu, Hiroshi; Kulpreecha, Songsri; Shioya, Suteaki (2008). Characterization of new isolated Ralstonia eutropha strain A-04 and kinetic study of biodegradable copolyester poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production. Journal of Industrial Microbiology and Biotechnology, 35(11), 1205-1215. https://doi.org/10.1007/s10295-008-0427-5
Dattatraya, Ganesh; Ganesh, Rijuta; Varjani, Sunita; Cho, Si-Kyung; Ghodake, Gajanan; Kadam, Avinash; Mulla, Sikandar; Naresh, Ram; Kim, Dong-Su; Seung, Han (2020). Development of ultrasound aided chemical pretreatment methods to enrich saccharifi cation of wheat waste biomass for polyhydroxybutyrate production and its characterization. Industrial Crops & Products, 150, 1-13. https://doi.org/10.1016/j.indcrop.2020.112425
De Bhowmick, Goldy; Sarmah, Ajit; Sen, Ramkrishna (2018). Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology, 247, 1144-1154. https://doi.org/10.1016/j.biortech.2017.09.163
De Souza, Larissa; Manasa, Y.; Shivakumar, Srividya (2020). Biocatalysis and Agricultural Biotechnology Bioconversion of lignocellulosic substrates for the production of polyhydroxyalkanoates. Biocatalysis and Agricultural Biotechnology, 28(julio), 101754. https://doi.org/10.1016/j.bcab.2020.101754
Dey, Pinaki; Rangarajan, Vivek (2017). Improved fed-batch production of high-purity PHB ( poly-3 hydroxy butyrate ) by Cupriavidus necator ( MTCC 1472 ) from sucrose-based cheap substrates under response surface- optimized conditions. 3 Biotech, 310(7), 1-14. https://doi.org/10.1007/s13205-017-0948-6
Favaro, Lorenzo; Basaglia, Marina; Casella, Sergio (2019). Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review. Biofuels, Bioproducts and Biorefining, 13(1), 208-227. https://doi.org/10.1002/bbb.1944
Gabhane, Jagdish; Kumar, Sachin; Sarma, A. K. (2020). Effect of glycerol thermal and hydrothermal pretreatments on lignin degradation and enzymatic hydrolysis in paddy straw. Renewable Energy, 154, 1304-1313. https://doi.org/10.1016/j.renene.2020.03.035
Galbe, Mats; Wallberg, Ola (2019). Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnology for Biofuels, 12(294), 1-26. https://doi.org/10.1186/s13068-019-1634-1
Ganesh, Rijuta; Dattatraya, Ganesh; Kyung, SI; Su, Dong; Ghodake, Gajanan; Kadam, Avinash; Kumar, Gopalakrishanan; Naresh, Ram (2019). Pretreatment of kenaf (Hibiscus cannabinus L .) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization. Bioresource Technology, 282, 75-80. https://doi.org/10.1016/j.biortech.2019.02.083
García, L.; Novoa, J.; Franco, A.; Higuita, L. (2015). Estudio de la síntesis de biopolímeros de origen microbiano. Revista QUID, 25, 69-78.
González, Y.; Meza, J.; González, O.; Córdoba, J. (2013). Síntesis y biodegradación de polihidroxialcanoatos: plásticos de origen microbiano. Revista Internacional de Contaminación Ambiental, 29(1), 77-115.
Govil, Tanvi; Wang, Jia; Samanta, Dipayan; David, Aditi;Tripathi, Abhilash; Rauniyar, Shailabh; Salem, David; Sani, Rajesh (2020). Lignocellulosic feedstock: A review of a sustainable platform for cleaner production of nature’s plastics. Journal of Cleaner Production, 270, 1-19. https://doi.org/10.1016/j.jclepro.2020.122521
Heinrich, Daniel; Madkour, Mohamed; Al-Ghamdi, Mansour; Shabbaj, Ibraheem; Steinbüchel, Alexander (2012). Large scale extraction of poly ( 3-hydroxybutyrate ) from Ralstonia eutropha H16 using sodium hypochlorite. AMB Express, 2(59), 1-6. https://doi.org/10.1186/2191-0855-2-59
Hermann, Carmen; Koller, Martin; Muhr, Alexander; Fasl, Hubert; Stelzer, Franz; Braunegg, Gerhart (2013). Archaeal Production of Polyhydroxyalkanoate (PHA) Co- and Terpolyesters from Biodiesel Industry-Derived By-Products. Hindawi, 2013, 1-10. https://doi.org/10.1155/2013/129268
Isak, I.; Patel, M.; Riddell, M.; West, M.; Bowers, T.; Wijeyekoon, S.; Lloyd, J. (2016). Quantification of polyhydroxyalkanoates in mixed and pure cultures biomass by Fourier transform infrared spectroscopy : comparison of different approaches. Letters in Applied Microbiology, 63(2), 139-146. https://doi.org/10.1111/lam.12605
Islam, Salatul; de Wever, Heileen; Volcke, Eveline; Garcia-Gonzalez, Linsey (2014). A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochemistry, 49(3), 365-373. https://doi.org/10.1016/j.procbio.2013.12.004
Jonsson, Leif; Alriksson, Björn; Nilvebrant, Nils-Olof (2013). Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 6(16), 1-10. https://doi.org/10.1186/1754-6834-6-16
Kant, Shashi; Gurav, Ranjit; Choi, Tae-Rim; Jung, Hye-Rim; Yang, Yun-Hun (2019). Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119. Bioresource Technology, 271, 306-315. https://doi.org/10.1016/j.biortech.2018.09.122
Kaur, Kamalpreet; Espirito, Melissa; Pellegrini, Vanessa; de Azevedo, Eduardo; Guimaraes, Francisco; Polikarpov, Igor (2020). Biomass and Bioenergy Enhanced hydrolysis of hydrothermally and autohydrolytically treated sugarcane bagasse and understanding the structural changes leading to improved saccharification. Biomass and Bioenergy, 139, 105639. https://doi.org/10.1016/j.biombioe.2020.105639
Kerketta, Ankush; Vasanth, D. (2019). Madhuca indica flower extract as cheaper carbon source for production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) using Ralstonia eutropha. Process Biochemistry, 87, 1-9. https://doi.org/10.1016/j.procbio.2019.09.013
Koller, Martin (2018). A review on established and emerging fermentation schemes for microbial production of polyhydroxyalkanoate (PHA) biopolyesters. Fermentation, 4(20), 1-30. https://doi.org/10.3390/fermentation4020030
Kumar, Manish; Rathour, Rashmi; Singh, Rashmi; Sun, Yaquing; Pandey, Ashok; Gnansounou, Edgard; Lin, Kun-Yi; Tsang, Daniel; Shekhar, Indu (2020). Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. Journal of Cleaner Production, 263, 1-20. https://doi.org/10.1016/j.jclepro.2020.121500
Li, Mengxing; Wilkins, Mark (2020). Recent advances in polyhydroxyalkanoate production : Feedstocks , strains and process developments. International Journal of Biological Macromolecules, 156, 691-703. https://doi.org/10.1016/j.ijbiomac.2020.04.082
Liu, C.; Zhang, L.; An, J.; Chen, B.; Yang, H. (2015). Recent strategies for efficient production of polyhydroxyalkanoates by micro-organisms. Letters in Applied Microbiology, 1558, 9-15. https://doi.org/10.1111/lam.12511
López, L.; Acosta, A.; Zambrano, R. (2013). Evaluación de pretratamientos químicos para la hidrólisis enzimática de residuos lignocelulósicos de yuca (Manihot esculenta Crantz). Revista Facultad Ingenieria Universidad de Antioquia, 69, 317-326.
Madeiros-Garcia, João; Distante, Franceso; Storti, Giuseppe; Moscatelli, Davide; Morbidelli, Massimo; Sponchioni, Mattia (2020). Current trends in the production of biodegradable bioplastics: The case of polyhydroxyalkanoates. Biotechnology Advances, 42, 1-9. https://doi.org/10.1016/j.biotechadv.2020.107582
Nath, A.; Dixit, M.; Bandiya, A.; Chavda, S.; Desai, A. J. (2008). Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. 99. Bioresource Technology, 99(13), 5749-5755. https://doi.org/10.1016/j.biortech.2007.10.017
Pakalapati, Harshini; Chang, Chi-Kai; Show, Pau; Arumugasamy, Senthil; Lan, John (2018). Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126(3), 282-292. https://doi.org/10.1016/j.jbiosc.2018.03.016
Plastic Market Size (2020). Plastics Polymers & Resins. https://www.fortunebusinessinsights.com/plastics-market-102176
Ranganathan, Saranya; Dutta, Sayantani; Moses, J. A.; Anandharamakrishnan, C. (2020). Utilization of food waste streams for the production of biopolymers. Heliyon, 6(9), 1-13. https://doi.org/10.1016/j.heliyon.2020.e04891
Raposo, Rodrigo; Cesário,Teresa; Almeida, Catarina; van Keulen, Frederik; Ferreira, Bruno; de Fonseca, Manuela R. (2014). Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnology, 31(1), 104-113. https://doi.org/10.1016/j.nbt.2013.10.004
Raza, Zulfiqar; Abid, Sharjeel; Banat, Ibrahim (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126, 45-56. https://doi.org/10.1016/j.ibiod.2017.10.001
Report European Bioplastic (2017). Bioplastic market data 2017. http://docs.european-bioplastics.org/publications/market_data/2017/Report_Bioplastics_Market_Data_2017.pdf
Rojas, E.; Hoyos, J.; Mosquera, S. (2016). Producción de polihidroxialcanoatos (PHAs) a partir de Ralstonia eutropha en un medio con harina de yuca como fuente de carbono. Biotecnología en el Sector Agripecuario y Agroindustrial, 14(1), 19-26.
Ruiz, Héctor; Rodríguez, Rosa; Fernandes, Bruno; Vicente, António; Teixeira, José (2013). Hydrothermal processing , as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept : A review. Renewable and Sustainable Energy Reviews, 21, 35-51. https://doi.org/10.1016/j.rser.2012.11.069
Ruiz, Héctor; Conrad, Marc; Sun, Shao-Ni; Sánchez, Arturo; Rocha, George; Romaní, Aloia; Castro, Eulogio; Torres, Ana; ... Meyer, Anne (2020). Engineering aspects of hydrothermal pretreatment : From batch to continuous operation , scale-up and pilot reactor under biorefinery concept. Bioresource Technology, 299, 1-16. https://doi.org/10.1016/j.biortech.2019.122685
Sabapathy, Poorna; Devaraj, Sabarinathan; Meixner, Katharina; Anburajan, Parthiban; Kathirvel, Preethi; Ravikumar, Yuvaraj; Zabed, Hossain; Qi, Xianghui (2020). Recent developments in Polyhydroxyalkanoates (PHAs) production - A review. Bioresource Technology, 306, 1-14. https://doi.org/10.1016/j.biortech.2020.123132
Saratale, Ganesh; Oh, Min-Kyu (2015). Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. International Journal of Biological Macromolecules, 80, 627-635. https://doi.org/10.1016/j.ijbiomac.2015.07.034
Saratale, Ganesh; Saratale, Rijuta; Varjani, Sunita; Cho, Si-Kyung; Ghodake, Gajanan; Kadam, Avinash; Mulla, Sikandar; ...Shin, Han (2020). Development of ultrasound aided chemical pretreatment methods to enrich saccharification of wheat waste biomass for polyhydroxybutyrate production and its characterization. Industrial Crops and Products, 150, 1-13. https://doi.org/10.1016/j.indcrop.2020.112425
Schmid, Maximilian; Raschbauer, Michaela; Song, Hyunjeong ; Bauer, Cornelia; Neureiter, Markus (2021). Effects of nutrient and oxygen limitation, salinity and type of salt on the accumulation of poly(3-hydroxybutyrate) in Bacillus megaterium uyuni S29 with sucrose as a carbon source. New Biotechnology, 61, 137-144. https://doi.org/10.1016/j.nbt.2020.11.012
Shahid, Salma; Razzaq, Sadia; Farooq, Robina; Nazli, Zill-i-Huma (2021). Polyhydroxyalkanoates: Next generation natural biomolecules and a solution for the world’s future economy. International Journal of Biological Macromolecules, 166, 297-321. https://doi.org/10.1016/j.ijbiomac.2020.10.187
Sultana, Naznin; Khan, Tareef (2012). In vitro degradation of PHBV scaffolds and nHA/PHBV composite scaffolds containing hydroxyapatite nanoparticles for bone tissue engineering. Journal of Nanomaterials, 2012, 1-12. https://doi.org/10.1155/2012/190950
Utsunomia, Camila; Ren, Qun; Zinn, Manfred (2020). Poly(4-Hydroxybutyrate): Current State and Perspectives. Frontiers in Bioengineering and Biotechnology, 8(257), 1-20. https://doi.org/10.3389/fbioe.2020.00257
Velmurugan, Rajendran; Muthukumar, Karuppan (2012). Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production : Optimization through response surface methodology. Bioresource Technology, 112, 293-299. https://doi.org/10.1016/j.biortech.2012.01.168
Vu, Hang; Nguyen, Luong; Vu, Mihn; Johir, Abu; McLaughlan, Robert; Nghiem, Long (2020). A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Science of the Total Environment, 743, 1-16. https://doi.org/10.1016/j.scitotenv.2020.140630
Wu, Han; Dai, Xiao; Zhou, Si-Li; Gan, Yu-Yan; Xiong, Zi-Yao; Qin, Yuan-Hang; Ma, Jiayu; …Wang, Cun-Wen (2017). Ultrasound-assisted alkaline pretreatment for enhancing the enzymatic hydrolysis of rice straw by using the heat energy dissipated from ultrasonication. Bioresource Technology, 241, 70-74. https://doi.org/10.1016/j.biortech.2017.05.090
Yang, Bin; Tao, Ling; Wayman, Charles (2018). Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels, Bioproducts and Biorefining, 12, 125-138. https://doi.org/10.1002/bbb.1825
Yu, Jian; Stahl, Heiko (2008). Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresource Technology, 99(17), 8042-8048. https://doi.org/10.1016/j.biortech.2008.03.071
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2021 Servicio Nacional de Aprendizaje SENA