Revisión: materiales poliméricos biodegradables y su aplicación en diferentes sectores industriales
XML
PDF

Palabras clave

polylactic acid
biopolymers
circular economy
sustainable manufacturing
natural fibers
PLA
polymers
sustainability
thermoplastics ácido poliláctico
biopolímeros
economía circular
fibras naturales
manufactura sostenible
PLA
polímeros
sostenibilidad
termoplásticos

Cómo citar

Posada, J. C., & Montes-Florez, E. (2021). Revisión: materiales poliméricos biodegradables y su aplicación en diferentes sectores industriales. Informador Técnico, 86(1), 94–110. https://doi.org/10.23850/22565035.3417

Resumen

La producción de materiales poliméricos a nivel mundial representa un consumo estimado en volumen de 359 millones de toneladas en el último año. Los polímeros, por su versatilidad de producción y aplicación en diversos campos de la industria, hoy en día están generando un problema ambiental por las grandes cantidades de residuos que se generan para su disposición final. Con el objetivo de encontrar aplicaciones amigables con el medio ambiente, se han venido desarrollando diferentes tipos de materiales como son los biopolímeros, que se pueden utilizar para fabricar materiales compuestos de matriz polimérica con algún tipo de carga de origen orgánico como las fibras naturales, para elaborar productos para el sector alimenticio, de construcción y automotriz, entre otros. Los polímeros biodegradables se han convertido en una buena opción para ser empleados como material sustituto que puedan mitigar en cierta proporción el impacto ambiental generado por los polímeros convencionales. El presente trabajo reporta una revisión bibliográfica que muestra la tendencia de aplicación de los biopolímeros de matriz polimérica con fibra natural. Para este propósito, se generó una búsqueda de información relevante sobre las tendencias de estos materiales, como también de sus diferentes aplicaciones en diversos sectores de la industria a nivel mundial, que permitan dar un conocimiento claro de las nuevas tendencias de la investigación para futuros desarrollos e investigaciones.

https://doi.org/10.23850/22565035.3417
XML
PDF

Citas

Altan, Aylin; Aytac, Zeynep; Uyar, Tamer (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48-59. https://doi.org/10.1016/j.foodhyd.2018.02.028

Alvarado, Nancy; Romero, Julio; Torres, Alejandra; López de Di Castillo, Carol; Rojas, Adrián; Galotto, María; Guarda, Abel (2018). Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibers: Development an active food packaging material. Journal of Food Engineering, 217, 1-10. https://doi.org/10.1016/j.jfoodeng.2017.08.008

Ambiente Plástico. (3 de junio de 2020). Apuesta por vehículos más sostenibles y menos contaminantes. Recuperado de https://www.ambienteplastico.com/apuesta-por-vehiculos-mas-sostenibles-y-menos-contaminantes/

Ashter, Syed (2016). Processing Biodegradable Polymers. Introduction to Bioplastics Engineering (pp. 179-209). Nueva York: William Andrew. https://doi.org/10.1016/b978-0-323-39396-6.00007-5

Bajracharya, Rohan; Bajwa, Dilpreet; Bajwa, Sreekala (2017). Mechanical properties of polylactic acid composites reinforced with cotton gin waste and flax fibers. Procedia Engineering, 200, 370-376. https://doi.org/10.1016/j.proeng.2017.07.052

Balart, J. F.; Fombuena, Vicent; Fenollar, Octavio; Boronat, Teodomiro; Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. https://doi.org/10.1016/j.compositesb.2015.09.063

Bax, Benjamin; Müssig, Jörg (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology, 68, 1601-1607. https://doi.org/10.1016/j.compscitech.2008.01.004

Bledzki, A. K.; Reihmane, S.; Gassan, J. (1996). Properties and modification methods for vegetable fibers for natural fiber composites. Journal of Applied Polymer Science, 59(8), 1329-1336. https://doi.org/10.1002/(sici)1097-4628(19960222)59:8<1329::aid-app17>3.3.co;2-5

Borrowman, Cuyler; Johnston, Priscilla; Adhikari, Raju; Saito, Kei; Patti, Antonio (2020). Environmental degradation and efficacy of a sprayable, biodegradable polymeric mulch. Polymer Degradation and Stability, 175, 109126. https://doi.org/10.1016/j.polymdegradstab.2020.109126

Chaitanya, Saurabh; Singh, Inderdeep; Song, Jung (2019). Recyclability analysis of PLA/Sisal fiber biocomposites. Composites Part B: Engineering, 173, 106895. https://doi.org/10.1016/j.compositesb.2019.05.106

Chen, Jie; Wang, Xia; Long, Zhu; Wang, Shuangfei; Zhang, Jingxian; Wang, Lei (2020). Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing. International Journal of Biological Macromolecules, 165, 2295-2302. https://doi.org/10.1016/j.ijbiomac.2020.10.117

Cheung, Hoi-Yan; Lau, Kin-Tak; Tao, Xiao-Ming; Hui, David (2008). A potential material for tissue engineering: Silkworm silk/PLA biocomposite. Composites Part B: Engineering, 39(6), 1026-1033. https://doi.org/10.1016/j.compositesb.2007.11.009

Chotiprayon, Patra; Chaisawad, Buchita; Yoksan, Rangron (2020). Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. International Journal of Biological Macromolecules, 156, 960-968. https://doi.org/10.1016/j.ijbiomac.2020.04.121

Conchubhair, Diarmuid; Fitzhenry, Deirdre; Lusher, Amy; King, Andrew; van Emmerik, Tim; Lebreton, Laurent; Ricaurte-Villota, Constanza; Espinosa, Luisa; O’Rourke, Eleanor (2019). Joint effort among research infrastructures to quantify the impact of plastic debris in the ocean. Environmental Research Letters, 14(6), 065001. https://doi.org/10.1088/1748-9326/ab17ed

Conn, R. E.; Kolstad, J. J.; Borzelleca, J. F.; Dixler, D. S.; Filer, L. J.; Ladu, B. N.; Pariza, M. W. (1995). Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food and Chemical Toxicology, 33(4), 273-283. https://doi.org/10.1016/0278-6915(94)00145-E

De Angelis, Roberta (2020). Circular economy and paradox theory: A business model perspective. Journal of Cleaner Production, 285, 124823. https://doi.org/10.1016/j.jclepro.2020.124823

De Oliveira, Sueli; Nunes de Macedo, José; Dos Santos Rosa, Derval (2019). Eco-efficiency of poly (lactic acid)-Starch-Cotton composite with high natural cotton fiber content: Environmental and functional value. Journal of Cleaner Production, 217, 32-41. https://doi.org/10.1016/j.jclepro.2019.01.198

Dong, Yu; Ghataura, Arvinder; Takagi, Hitoshi; Haroosh, Hazim; Nakagaito, Antonio; Lau, Kin-Tak (2014). Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites Part A: Applied Science and Manufacturing, 63, 76-84. https://doi.org/10.1016/j.compositesa.2014.04.003

Eichhorn, S. J.; Dufresne, A.; Aranguren, M.; Marcovich, N. E.; Capadona, J. R.; Rowan, S.; … Peijs, T. (2010). Review: Current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 45(1), 1-33. https://doi.org/10.1007/s10853-009-3874-0

Ellen Macarthur Foundation (2014). The circular model: an overview. http://www.ellenmacarthurfoundation.org/circular-economy/circular-economy/the-circular-model-an-overview

Fabra, María; Martínez-Sanz, Marta; Gómez-Mascaraque, L. G.; Gavara, Rafael; López-Rubio, Amparo (2018). Structural and physicochemical characterization of thermoplastic corn starch fi lms containing microalgae. Carbohydrate Polymers, 186, 184-191. https://doi.org/10.1016/j.carbpol.2018.01.039

Fan, Yupeng; Fang, Chuanglin (2020). Circular economy development in China-current situation, evaluation and policy implications. Environmental Impact Assessment Review, 84(junio), 106441. https://doi.org/10.1016/j.eiar.2020.106441

Faruk, Omar; Bledzki, Andrzej; Fink, Hans-Peter; Sain, Mohini (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37(11), 1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

García, Omar; Pinzón, Magda; Villa, Cristian (2020). Analysis and Modeling of Mechanical and Barrier Properties of Arracacha Starch-Chitosan Composite Biodegradable Films. Journal of Polymers and the Environment, 28(8), 2253-2262. https://doi.org/10.1007/s10924-020-01765-0

Gaustad, Gabrielle; Krystofik, Mark; Bustamante, Michele; Badami, Kedar (2018). Resources, Conservation & Recycling Circular economy strategies for mitigating critical material supply issues. Resources, Conservation and Recycling, 135(junio), 24-33. https://doi.org/10.1016/j.resconrec.2017.08.002

Geyer, Roland; Jambeck, Jenna; Law, Kara (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), 25-29. https://doi.org/10.1126/sciadv.1700782

Gómez, Silvia (13 de octubre de 2018). Colombia, mejor sin plásticos. El tiempo. https://www.eltiempo.com/opinion/columnistas/silvia-gomez/colombia-mejor-sin-plasticos-silvia-gomez-281060

Hamad, Kotiba; Kaseem, Mosab; Ayyoob, Muhammad; Joo, Jinho; Deri, Fawaz (2018). Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83-127. https://doi.org/10.1016/j.progpolymsci.2018.07.001

Hernández-López, Mónica; Correa-Pacheco, Zormy; Bautista-Baños, Silvia; Zavaleta-Avejar, Leonor; Benítez-Jiménez, José; Sabino-Gutiérrez, Marcos; Ortega-Gudiño, Pedro (2019). Bio-based composite fibers from pine essential oil and PLA/PBAT polymer blend. Morphological, physicochemical, thermal, and mechanical characterization. Materials Chemistry and Physics, 234(enero), 345-353. https://doi.org/10.1016/j.matchemphys.2019.01.034

Hong, Haoqung; Xiao, Ruijing; Guo, Quannan; Liu, Hao; Zhang, Haiyan (2019). Quantitively characterizing the chemical composition of tailored bagasse fiber and its effect on the thermal and mechanical properties of polylactic acid-based composites. Polymers, 11(10). https://doi.org/10.3390/polym11101567

Huerta-Cardoso, Omar; Durazo-Cardenas, Isidro; Longhurst, Phil; Simms, Nigel; Encinas-Oropesa, Adriana (2020). Fabrication of agave tequilana bagasse/PLA composite and preliminary mechanical properties assessment. Industrial Crops and Products, 152(mayo), 112523. https://doi.org/10.1016/j.indcrop.2020.112523

Jandas, P. J.; Mohanty, Smita; Nayak, Sanjeev (2013). Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications. Journal of Cleaner Production, 52, 392-401. https://doi.org/10.1016/j.jclepro.2013.03.033

Kaplan, David (Ed.). (1998). Introduction to Biopolymers from Renewable Resources. En Biopolymers from Renewable Resources (pp. 1-29). Medford: Springer. https://doi.org/10.1007/978-3-662-03680-8_1

Kumar, Kiran; Babu, Suresh; Rao, R. N. (2018). State of the Art on Automotive Lightweight Body-in-White Design. Materials Today: Proceedings, 5(10), 20966-20971. https://doi.org/10.1016/j.matpr.2018.06.486

Kumar, Navdeep; Das, Dipayan (2017). Fibrous biocomposites from nettle (Girardinia diversifolia) and poly (lactic acid) fibers for automotive dashboard panel application. Composites Part B, 130, 54-63. https://doi.org/10.1016/j.compositesb.2017.07.059

Lomelí-Ramírez, María; Satyanarayana, Kestur; Iwakiri, Setsuo; de Muniz, Graciela; Tanobe, Valcineide; Flores-Sahagun, Thais. (2011). Study of the properties of biocomposites. Part I. Cassava starch-green coir fibers from Brazil. Carbohydrate Polymers, 86(4), 1712-1722. https://doi.org/10.1016/j.carbpol.2011.07.002

Matthews, Chris; Moran, Fintan; Jaiswal, Amit (2020). A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. Journal of Cleaner Production, 283, 125263. https://doi.org/10.1016/j.jclepro.2020.125263

Mazzanti, Valentina; Pariante, R.; Bonanno, Antonino; Ruiz de Ballesteros, O.; Mollica, Francesco; Filippone, Giovanni (2019a). Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Composites Science and Technology, 180(mayo), 51-59. https://doi.org/10.1016/j.compscitech.2019.05.015

Mazzanti, Valentina; Pariante, R.; Bonanno, Antonino; Ruiz de Ballesteros, O.; Mollica, Francesco; Filippone, Giovanni (2019b). Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Composites Science and Technology, 180(marzo), 51-59. https://doi.org/10.1016/j.compscitech.2019.05.015

Mazzanti, Valentina; Salzano de Luna, M.; Pariante, R.; Mollica, Francesco; Filippone, Giovanni (2020). Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state. Composites Part A: Applied Science and Manufacturing, 137(enero), 105990. https://doi.org/10.1016/j.compositesa.2020.105990

Mohamed, Salah; El-Sakhawy, Mohamed; El-Sakhawy, Mohamed Abdel-Monem (2020). Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydrate Polymers, 238(febrero), 116178. https://doi.org/10.1016/j.carbpol.2020.116178

Mohanty, Amar; Vivekanandhan, Singaravelu; Pin, Jean; Misra, Manjusri (2018). Composites from renewable and sustainable resources: Challenges and innovations. Science, 362(6414), 536-542. https://doi.org/10.1126/science.aat9072

Motru, Suneel; Adithyakrishna, V. H.; Bharath, J.; Guruprasad, R. (2020). Development and Evaluation of Mechanical Properties of Biodegradable PLA/Flax Fiber Green Composite Laminates. Materials Today: Proceedings, 24(parte 2), 641-649. https://doi.org/10.1016/j.matpr.2020.04.318

Netravali, Anil (2019). Advanced green composites: New directions. Materials Today: Proceedings, 8(parte 3), 832-838. https://doi.org/10.1016/j.matpr.2019.02.025

Nofar, Mohammadreza; Sacligil, Dilara; Carreau, Pierre; Kamal, Musa; Heuzey, Marie (2019). Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 125, 307-360. https://doi.org/10.1016/j.ijbiomac.2018.12.002

Ozyhar, T.; Baradel, F.; Zoppe, J. (2020). Effect of functional mineral additive on processability and material properties of wood-fiber reinforced poly(lactic acid) (PLA) composites. Composites Part A: Applied Science and Manufacturing, 132(enero), 105827. https://doi.org/10.1016/j.compositesa.2020.105827

Paletta, Angelo; Leal, Walter; Balogun, Abdul; Foschi, Eleonora; Bonoli, Alessandra (2019). Barriers and challenges to plastics valorisation in the context of a circular economy: Case studies from Italy. Journal of Cleaner Production, 241, 118149. https://doi.org/10.1016/j.jclepro.2019.118149

Pappu, Asokan; Pickering, Kim; Kumar, Vijay (2019). Industrial Crops & Products Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fi bres as reinforcement of poly (lactic acid) via injection moulding. Industrial Crops & Products, 137(octubre), 260269. https://doi.org/10.1016/j.indcrop.2019.05.040

Plastics Europe; Conversio Market; Strategy GmbH. (2019). Plastics, the Facts, 2019. https://www.plasticseurope.org/en/resources/market-data

PlasticsEurope; Plastics Europe Market Research Group; Consultic Marketing; Industrieberatung GmbH. (2017). Plastics, the Facts, 2017. https://www.plasticseurope.org/en/resources/market-data

Porras, Alicia; Maranon, Alejandro (2012). Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric. Composites Part B: Engineering, 43(7), 2782-2788. https://doi.org/10.1016/j.compositesb.2012.04.039

Quintero, Juan; Falguera, Víctor; Muñoz, Aldemar (2010). Films and edible coatings: importance, and recent trends in fruit. Revista Tumbaga, 5(1), 93-118.

Ramos, Marina; Jiménez, Alfonso; Peltzer, Mercedes; Garrigós, María (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 109(3), 513-519. https://doi.org/10.1016/j.jfoodeng.2011.10.031

Rasal, Rahul; Janorkar, Amol; Hirt, Douglas (2010). Poly(lactic acid) modifications. Progress in Polymer Science (Oxford), 35(3), 338-356. https://doi.org/10.1016/j.progpolymsci.2009.12.003

Saeidlou, Sajjad; Huneault, Michel; Li, Hongbo; Park, Chul (2012). Poly(lactic acid) crystallization. Progress in Polymer Science, 37(12), 1657-1677. https://doi.org/10.1016/j.progpolymsci.2012.07.005

Sanchez-Olivares, Guadalupe; Sanchez-Solis, Antonio; Calderas, Fausto; Alongi, Jenny (2017). Keratin fibres derived from tannery industry wastes for fl ame retarded PLA composites. Polymer Degradation and Stability, 140, 42-54. https://doi.org/10.1016/j.polymdegradstab.2017.04.011

Sawpan, Moyeenuddin; Pickering, Kim; Fernyhough, Alan (2011). Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Composites Part A: Applied Science and Manufacturing, 42(3), 310-319. https://doi.org/10.1016/j.compositesa.2010.12.004

Scott, Gerald (2007). Polymers and the Environment. Londres: Royal Society of Chemistry.

Shih, Yeng-Fong; Huang, Chien-Chung (2011). Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. Journal of Polymer Research, 18(6), 2335-2340. https://doi.org/10.1007/s10965-011-9646-y

Soroudi, Azadeh; Jakubowicz, Ignacy (2013). Recycling of bioplastics , their blends and biocomposites : A review. European Polymer Journal, 49(10), 2839-2858. https://doi.org/10.1016/j.eurpolymj.2013.07.025

Stloukal, Petr; Kalendova, Alena; Mattausch, Hannelore; Laske, Stephan; Holzer, Clemens; Koutny, Marek (2015). The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polymer Testing, 41, 124-132. https://doi.org/10.1016/j.polymertesting.2014.10.015

Suárez-Eiroa, Brais; Fernández, Emilio; Méndez-Martínez, Gonzalo; Soto-Oñate, David (2019). Operational principles of circular economy for sustainable development: Linking theory and practice. Journal of Cleaner Production, 214, 952-961. https://doi.org/10.1016/j.jclepro.2018.12.271

Sung, Soo; Chang, Yoonjee; Han, Jaejoon (2017). Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydrate Polymers, 169, 495-503. https://doi.org/10.1016/j.carbpol.2017.04.037

Suwanamornlert, Panitee; Kerddonfag, Noppadon; Sane, Amporn; Chinsirikul, Wannee; Zhou, Weibiao; Chonhenchob, Vanee (2020). Poly(lactic acid)/poly(butylene-succinate-co-adipate) (PLA/PBSA) blend films containing thymol as alternative to synthetic preservatives for active packaging of bread. Food Packaging and Shelf Life, 25(junio), 100515. https://doi.org/10.1016/j.fpsl.2020.100515

Tawakkal, Intan; Cran, Marlene; Bigger, Stephen (2014). Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of PLA/kenaf/thymol composites. Industrial Crops and Products, 61, 74-83. https://doi.org/10.1016/j.indcrop.2014.06.032

Thompson, Richard; Moore, Charles; vom Saal, Frederick; Swan, Shanna (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153-2166. https://doi.org/10.1098/rstb.2009.0053

Valerio, Oscar; Muthuraj, Rajendran; Codou, Amadine (2020). ScienceDirect Strategies for polymer to polymer recycling from waste : Current trends and opportunities for improving the circular economy of polymers in South America. Current Opinion in Green and Sustainable Chemistry, 25, 100381. https://doi.org/10.1016/j.cogsc.2020.100381

Vanitha, Rajamani; Kavitha, Chandramohan (2020). Development of natural cellulose fiber and its food packaging application. Materials Today: Proceedings, 36(parte 4), 903-906. https://doi.org/10.1016/j.matpr.2020.07.029

Wang, Guilong; Zhang, Dongmei; Wan, Gengping; Li, Bo; Zhao, Guoqun (2019). Glass fiber reinforced PLA composite with enhanced mechanical properties, thermal behavior, and foaming ability. Polymer, 181(octubre). https://doi.org/10.1016/j.polymer.2019.121803

Wang, Jundong; Tan, Zhi; Peng, Jinping; Qiu, Qiongxuan; Li, Meimin (2016). The behaviors of microplastics in the marine environment. Marine Environmental Research, 113, 7-17. https://doi.org/10.1016/j.marenvres.2015.10.014

Wang, Kuo-Hsiung; Wu, Tzong-Ming; Shih, Yeng-Fong; Huang, Chien-Ming (2008). Water bamboo husk reinforced poly(lactic acid) green composites. Polymer Engineering and Science, 48(9), 1833-1839. https://doi.org/10.1002/pen.21151

Wen, Peng; Zhu, Ding-He; Feng, Kun; Liu, Fang-Jun; Lou, Wen-Yong; Li, Ning; Zong, Min-Hua; Wu, Hong (2016). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chemistry, 196, 996-1004. https://doi.org/10.1016/j.foodchem.2015.10.043

Wu, Chin-San (2015). Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability. Polymer Degradation and Stability, 121, 51-59. https://doi.org/10.1016/j.polymdegradstab.2015.08.011

Yu, Tao; Ren, Jie; Li, Shumao; Yuan, Hua; Li, Yan (2010). Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Composites Part A: Applied Science and Manufacturing, 41(4), 499-505. https://doi.org/10.1016/j.compositesa.2009.12.006

Zhong, Yajie; Godwin, Patrick; Jin, Yongcan; Xiao, Huining (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27-35. https://doi.org/10.1016/j.aiepr.2019.11.002

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2021 Servicio Nacional de Aprendizaje SENA

Descargas

Los datos de descargas todavía no están disponibles.