Informador Técnico
ISSN: 2256-5035 (Electrónico)
ISSN: 0122-056X (Impreso)
Formato: Electrónico / Acceso Abierto
Frecuencia: Números Semestrales
Revisión por Pares: Doble Ciego
En la presente investigación se evaluó la síntesis verde de nanopartículas de óxido de zinc (ZnO) y su aplicación como agente antibacteriano para sustratos textiles. El proceso de síntesis implicó el uso de extractos de Azadirachta indica, Aloe vera, y acetato de zinc como precursor metálico. La síntesis de nanopartículas se confirmó mediante espectrofotometría UV-Vis, espectroscopia de infrarrojo con transformada de Fourier (FTIR), difracción de rayos X (DRX) y microscopía electrónica de barrido. La eficiencia de las nanopartículas como agentes antibacterianos en textiles se probó en uno de 100 % algodón funcionalizado por impregnación. Este fue sometido a cinco y diez ciclos de lavado doméstico para analizar la durabilidad de las nanopartículas. La actividad antibacteriana del textil funcionalizado, con y sin ciclos de lavado, se determinó mediante la norma ISO 20743:2007 contra la bacteria Staphylococcus aureus ATCC 6538. Se encontró que las nanopartículas confieren una actividad antibacteriana fuerte al textil y, aunque hay una pérdida importante del nanomaterial con los ciclos de lavado, la concentración remanente es suficiente para mantener una actividad antibacteriana significativa hasta los diez ciclos de lavado. Se concluye que las nanopartículas de ZnO son candidatas promisorias para ser empleadas como agentes antibacterianos en la industria textil, pues presentan actividad antibacteriana y son relativamente fáciles de obtener por síntesis verde con extractos de A. indica y A. vera, material vegetal de fácil acceso en el departamento de Antioquia.
Agarwal, Happy; Kumar, Venkat; Shanmugam, Rajeshkumar (2017). A review on green synthesis of zinc oxide nanoparticles-An eco-friendly approach. Resource-Efficient Technologies, 3(4), 406-413. https://doi.org/10.1016/j.reffit.2017.03.002
Agarwal, Happy; Menon, Soumya; Kumar, Venkat; Shanmugam, Rajeshkumar (2018). Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 286(4), 60-70. https://doi.org/10.1016/j.cbi.2018.03.008
Ali, Khursheed; Dwivedi, Sourabh; Azam, Ameer; Saquib, Quaiser; Al-Said, Mansour; Alkhedhairy, Abdulaziz; Musarrat, Javed (2016). Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. Journal of Colloid and Interface Science, 472, 145-156. https://doi.org/10.1016/j.jcis.2016.03.021
Arya, Sandeep; Mahajan, Prena; Mahajan, Sarika; Khosla, Ajit; Datt, Ram; Gupta, Vinay; … Oruganti, Sai (2021). Review—Influence of Processing Parameters to Control Morphology and Optical Properties of Sol-Gel Synthesized ZnO Nanoparticles. ECS Journal of Solid State Science and Technology, 10(2), 023002. https://doi.org/10.1149/2162-8777/abe095
Bandeira, Marina; Giovanela, Marcelo; Roesch-Ely, Mariana; Devine, Declan; da Silva Crespo, Janaina (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15(enero), 100223. https://doi.org/10.1016/j.scp.2020.100223
Basnet, Parita; Chanu, Ina; Samanta, Dhrubajyoti; Chatterjee, Somenath (2018). A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. Journal of Photochemistry and Photobiology B: Biology, 183, 201-221. https://doi.org/10.1016/j.jphotobiol.2018.04.036
Becheri, Alessio; Dürr, Maximilian; Lo Nostro, Pierandrea; Baglioni, Piero (2008). Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers. Journal of Nanoparticle Research, 10(4), 679-689. https://doi.org/10.1007/s11051-007-9318-3
Belay, Abebe; Mekuria, Melaku; Adam, Getachew (2020). Incorporation of zinc oxide nanoparticles in cotton textiles for ultraviolet light protection and antibacterial activities. Nanomaterials and Nanotechnology, 10, 1-8. https://doi.org/10.1177/1847980420970052
Bello, Daniel; Carrera, Emilia; Díaz, Yuset (2006). Determinacion de azúcares reductores totales en jugos mezclados de caña de azúcar utilizando el método del acido 3,5 dinitrosalicilico. Sobre Los Derivados de La Caña de Azúcar, 40(2), 45-50.
Bhuyan, Tamanna; Mishra, Kavita; Khanuja, Manika; Prasad, Ram; Varma, Ajit (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32, 55-61. https://doi.org/10.1016/j.mssp.2014.12.053
Christy, Rosy; Lakshminarayanan, Srimathi; Durka, M.; Dinesh, A.; Babitha, N.; Arunadevi, S. (2019). Simple Combustion Synthesis, Structural, Morphological, Optical and Catalytic Properties of ZnO Nanoparticles. Journal of Nanoscience and Nanotechnology, 19(6), 3564-3570. https://doi.org/10.1166/jnn.2019.16141
Cullity, Bernard; Stock, Stuart (2014). Elements of X-ray diffraction (3era ed.). Edinburgh Gate: Pearson Education Limited.
Dhandapani, Perumal; Siddarth, Arun; Kamalasekaran, S.; Maruthamuthu, Saravana; Rajagopal, G. (2014). Bio-approach: Ureolytic bacteria mediated synthesis of ZnO nanocrystals on cotton fabric and evaluation of their antibacterial properties. Carbohydrate Polymers, 103(1), 448-455. https://doi.org/10.1016/j.carbpol.2013.12.074
Dharmasivam, Mahendiran; Subash, G.; Selvan, Arumai; Rehana, Dilaveez; Senthil-Kumar, Raju; Rahiman, Kalilur (2017). Biosynthesis of Zinc Oxide Nanoparticles Using Plant Extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, Antibacterial, Antioxidant and Anti-proliferative Studies. BioNanoScience, 7(3), 530-545. https://doi.org/10.1007/s12668-017-0418-y
Dobrucka, Renata; Długaszewska, Jolanta (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences, 23(4), 517-523. https://doi.org/10.1016/j.sjbs.2015.05.016
Dulta, Kanika; Koşarsoy-Ağçeli, Gozde; Chauhan, Parveen; Jasrotia, Rohit; Chauhan, P. K. (2021). A Novel Approach of Synthesis Zinc Oxide Nanoparticles by Bergenia ciliata Rhizome Extract: Antibacterial and Anticancer Potential. Journal of Inorganic and Organometallic Polymers and Materials, 31(1), 180-190. https://doi.org/10.1007/s10904-020-01684-6
Elumalai, K.; Velmurugan, Sivasangari (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Applied Surface Science, 345, 329-336. https://doi.org/10.1016/j.apsusc.2015.03.176
Gómez-Garzón, Martha (2018). Nanomateriales, Nanopartículas y Síntesis verde. Revista Repertorio de Medicina y Cirugía, 27(2), 75-80. https://doi.org/10.31260/repertmedcir.v27.n2.2018.191
Handago, Dawit; Zereffa, E. A.; Gonfa, Bedasa (2019). Effects of Azadirachta Indica Leaf Extract, Capping Agents, on the Synthesis of Pure and Cu Doped ZnO-Nanoparticles: A Green Approach and Microbial Activity. Open Chemistry, 17(1), 246-253. https://doi.org/10.1515/chem-2019-0018
Hilgenberg, B.; Prange, Alexander; Vossebein, L. (2016). Testing and regulation of antimicrobial textiles. En A. Sun (Ed.), Antimicrobial Textiles (pp. 226-245). Cambridge: Elsevier.
Hu, Rujiu; Li, Jing; Zhao, Yuezhen; Lin, Hua; Liang, Liu; Wang, Mimi; … Yang, Mingming (2020). Exploiting bacterial outer membrane vesicles as a cross-protective vaccine candidate against avian pathogenic Escherichia coli (APEC). Microbial Cell Factories, 19(1), 1-17. https://doi.org/10.1186/s12934-020-01372-7
Ibrahim, Nabil; Abd El-Ghany, Nahed; Eid, Basma; Mabrouk, Eman (2018). Green options for imparting antibacterial functionality to cotton fabrics. International. Journal of Biological Macromolecules, 111, 526-533. https://doi.org/10.1016/j.ijbiomac.2018.01.013
Instituto Colombiano de Normas Técnicas y Certificación [Icontec] (2016). NTC 6174:2016. Textiles. Determinación de la actividad antibacteriana de productos textiles. Bogotá: Icontec.
Instituto Colombiano de Normas Técnicas y Certificación [Icontec] (2017). NTC 1155-3:2017. Textiles. Ensayos de solidez del color. Parte 3: solidez del color al lavado. Método acelerado. Bogotá: Icontec.
Jayachandran, Ashwini; Ashwaty, T. R.; Nair, Achuthsankar (2021). Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochemistry and Biophysics Reports, 26, 100995. https://doi.org/10.1016/j.bbrep.2021.100995
Lalithambika, K. C.; Thayumanavan, A.; Ravichandran, K.; Subramanian, Sriram (2017). Photocatalytic and antibacterial activities of eco-friendly green synthesized ZnO and NiO nanoparticles. Journal of Materials Science: Materials in Electronics, 28(2), 2062-2068. https://doi.org/10.1007/s10854-016-5767-8
Liu, Ying; Li, JinFeng; Ahn, JongChan; Pu, JianYu; Rupa, Esrat; Huo, Yue; Yang, Deok (2020). Biosynthesis of zinc oxide nanoparticles by one-pot green synthesis using fruit extract of Amomum longiligulare and its activity as a photocatalyst. Optik, 218, 165245. https://doi.org/10.1016/j.ijleo.2020.165245
Malik, Gulshan; Mitra, Jayeeta (2021). Zinc Oxide Nanoparticle Synthesis, Characterization, and Their Effect on Mechanical, Barrier, and Optical Properties of HPMC-Based Edible Film. Food and Bioprocess Technology, 14(3), 441-456. https://doi.org/10.1007/s11947-020-02566-y
Mishra, Rajesh; Militky, Jiri (2019). Nanotechnology in textiles: Theory and application. Cambridge, MA: Woodhead Publishing.
Muñoz, Laura (2019). Acabados Antimicrobianos en Textiles: Tendencias y Aplicaciones. Encuentro SENNOVA Del Oriente Antioqueño, 5, 17-33.
Muthu, Subramanian (2017). Textiles and Clothing Sustainability. Singapur: Springer. https://doi.org/10.1007/978-981-10-2188-6
Noorian, Seyyed; Hemmatinejad, Nahid; Navarro, Jorge (2020). Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. International Journal of Biological Macromolecules, 154, 1215-1226. https://doi.org/10.1016/j.ijbiomac.2019.10.276
Quiceno, Juan; Ospina, Leopoldo; Gómez, Dorely; Román, Melissa; Betancur, María; Cadavid, Natalia; … Pássaro, Catarina (2017). Manual para el análisis de biocompuestos en frutas. Aplicaciones en el Estudio de la Gulupa. Rionegro: Servicio Nacional de Aprendizaje.
Rajendra, Radhai; Balakumar, C.; Ahammed, Hasabo; Jayakumar, S.; Vaideki, K.; Rajesh, E. (2010). Use of zinc oxide nano particles for production of antimicrobial textiles. International Journal of Engineering, Science and Technology, 2(1), 202-208. https://doi.org/10.4314/ijest.v2i1.59113
Ramesh, M.; Anbuvannan, M.; Viruthagiri, G. (2015). Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 136(PB), 864-870. https://doi.org/10.1016/j.saa.2014.09.105
Rasli, Wanie; Basri, Hatijah; Harun, Zawati (2020). Zinc oxide from aloe vera extract: two-level factorial screening of biosynthesis parameters. Heliyon, 6(1), e03156. https://doi.org/10.1016/j.heliyon.2020.e03156
Saha, Joykrisna; Mondal, Ibrahim (2021). Antimicrobial textiles from natural resources: types, properties and processing. En I. Mondal (Ed.), Antimicrobial Textiles from Natural Resources (pp. 1-43). Cambridge, MA: Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821485-5.00016-0
Salas, Gabriel; Guerrero, Victor; Rosas, Nelly (2016). Uso de Nanopartículas de ZnO en Tejidos de Algodón para Mejorar sus Propiedades de Protección Ultravioleta. X Congreso de Ciencia y Tecnología, 10, 16-21.
Salat, Marc; Petkova, Petya; Hoyo, Javier; Perelshtein, Ilana; Gedanken, Aharon; Tzanov, Tzanko (2018). Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive. Carbohydrate Polymers, 189, 198-203. https://doi.org/10.1016/j.carbpol.2018.02.033
Samat, Nurulain; Nor, Roslan (2013). Sol-gel synthesis of zinc oxide nanoparticles using Citrus aurantifolia extracts. Ceramics International, 39(Sup. 1), S545-S548. https://doi.org/10.1016/j.ceramint.2012.10.132
Selim, Yasser; Azb, Maha; Ragab, Islam; Abd El-Azim, Mohamed (2020). Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities. Scientific Reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-60541-1
Sharma, Saurabh; Kumar, Kuldeep; Thakur, Naveen; Chauhan, S.; Chauhan, M. S. (2020). The effect of shape and size of ZnO nanoparticles on their antimicrobial and photocatalytic activities: a green approach. Bulletin of Materials Science, 43(1), 20. https://doi.org/10.1007/s12034-019-1986-y
Singh, Akhilesh; Pal, Priti; Gupta, Vinay; Yadav, Thakur; Gupta, Vishu; Singh, Satarudra (2018). Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Materials Chemistry and Physics, 203, 40-48. https://doi.org/10.1016/j.matchemphys.2017.09.049
Singh, Amit; Neelam; Kaushik; Mahima (2019). Physicochemical investigations of zinc oxide nanoparticles synthesized from Azadirachta Indica (Neem)leaf extract and their interaction with Calf-Thymus DNA. Results in Physics, 13, 102168. https://doi.org/10.1016/j.rinp.2019.102168
Singh, Ravindra; Shukla, Vineet; Yadav, Raghvendra; Sharma, Prashant; Singh, Prashant; Pandey, Avinash (2011). Biological approach of zinc oxide nanoparticles formation and its characterization. Advanced Materials Letters, 2(4), 313-317. https://doi.org/10.5185/amlett.indias.204
Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor; Ann, Ling; Bakhori, Khadijah; … Mohamad, Dasmawati (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219-242. https://doi.org/10.1007/s40820-015-0040-x
Sohail, Muhammad; Rehman, Mubashar; Hussain, Syed; Huma, Zil-E; Shahnaz, Gul; Qureshi, Omer; … Webster, Thomas (2020). Green synthesis of zinc oxide nanoparticles by Neem extract as multi-facet therapeutic agents. Journal of Drug Delivery Science and Technology, 59, 101911. https://doi.org/10.1016/j.jddst.2020.101911
Song, Xinyu; Padrão, Jorge; Ribeiro, Ana; Zille, Andrea (2021). Testing, characterization and regulations of antimicrobial textiles. En I. Mondal (Ed.), Antimicrobial Textiles from Natural Resources (pp. 485-511). Cambridge, MA: Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821485-5.00012-3
Standard International (2007). ISO 20743:2007. Textiles. Determination of antibacterial activity of textile products. Recuperado de https://www.iso.org/standard/34261.html
Suganya, S.; Vivekanandhan, Singaravelu (2019). Neem (Azadirachta indica) gum assisted sol–gel synthesis and characterization of ZnO nanoparticles for photocatalytic application. Journal of the Australian Ceramic Society, 55(2), 433-442. https://doi.org/10.1007/s41779-018-0251-y
Tania, Imana; Ali, Mohammad (2020). Effect of the coating of zinc oxide (ZnO) nanoparticles with binder on the functional and mechanical properties of cotton fabric. Materials Today: Proceedings, 38(3-4), 2607-2611. https://doi.org/10.1016/j.matpr.2020.08.171
Uribe, Carmen; Meneses, Elsa; Brañez, Marco; Álvarez, Jessica; Román, Esmeralda; Maurtua, Dora; … Gómez, Mónica (2016). Funcionalización de textiles de algodón con nanopartículas de ZnO2. Revista Sociedad Química Perú, 82(2), 216-231.
Verbič, Anja; Gorjanc, Marija; Simončič, Barbara (2019). Zinc oxide for functional textile coatings: Recent advances. Coatings, 9(9), 17-23. https://doi.org/10.3390/coatings9090550
Yetisen, Ali; Qu, Hang; Manbachi, Ammir; Butt, Haider; Dokmeci, Mehmet; Hinestroza, Juan; … Yun, Seok (2016). Nanotechnology in Textiles. ACS Nano, 10(3), 3042-3068. https://doi.org/10.1021/acsnano.5b08176
Zayed, Menna; Othman, Hanan; Ghazal, Heba; Hassabo, Ahmed (2021). Psidium Guajava leave extract as reducing agent for synthesis of zinc oxide nanoparticles and its application to impart multifunctional properties for cellulosic fabrics. Biointerface Research in Applied Chemistry, 11(5), 13535-13556. https://doi.org/10.33263/BRIAC115.1353513556
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2021 Servicio Nacional de Aprendizaje SENA