Abstract
One of humanities major challenges is to ensure global food security. Since the 60’s efforts have been made to increase food production for a growing population. Breeding programs have been playing an important role, as well as the communities of medium and small farmers who retain a high percentage of genetic variability of major crops through local production systems. New technologies have been incorporated such as biotechnology, eco-efficient agriculture, and intelligent agriculture to develop sustainable production systems. While the food supply has increased, the phenomena of global warming- GW and climate change -CC appear as a threat, because of its effects on phenological and physiological aspects of crops, estimated by modeling, forecasting a strong reduction in biodiversity and crop yields worldwide with regional variations. As far as these concerns, it’s necessary to make well-timed adaptation plans consistent with the vulnerability levels in different countries. In this situation,a strategy to adapt to future scenarios posed by GW; is to incorporate the most biodiversity possible and available in breeding programs. This context requires great creativity to not only maintain but to increase crop yields and ease the loss of natural resources in order to ensure global food security.
Para citar este artículo
Cardozo, C. (2014). Cambio climático y agrobiodiversidad. Revista colombiana de investigaciones agroindustriales, 1(1), 72-79. DOI: http://dx.doi.org/10.23850/24220582.117
References
Bellon, M.R., Hodsonb, D. & Hellinc, J. (2011). Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proccedings of the National Academy of Sciences of the United States of America, 108(33), 13432–13437.
Brian, F.; Johannes, M. & Michael Jackson. (2013). Genetic Resources and Conservation challenges under the Threat of Climate Change In: Plant genetic resources and climate change / edited by Michael Jackson, Brian Ford-Lloyd and Martin Parry. ISBN 978-1-78064-197-3
Challinor A.J. & Wheeler T.R. (2008). Crop yield reduction in the tropics under climate change: processes and uncertainties. Agric. Forest. Meteorol., 148, 343–56.
Djanaguiraman, M., Prasad, P.V.V., Boyle, D.L. & Schapaugh, W.T. (2013). Soybean pollen anatomy, viability, and pod set under high temperature stress. Journal of Agronomy and Crop Science, 199, 171–177.
Egli, D.B., TeKrony, D.M. & Spears, J.F. (2005). High temperature stress and soybean seed quality: Stage of seed development. Seed Technology, 33, 345–352.
El-Sharkawy, M.A. y Mejía, S. (2011). Cambio Climático: Causas y Posibles impactos en los Ecosistemas Agrícolas. En: Genómica y Modelación en los nuevos Escenarios de la Ganadería Bovina Tropical. Segundo Simposio Internacional. Grupo de investigación Conservación, Mejoramiento y Utilización del Ganado Criollo Hartón del Valle y otros Recursos Genéticos en el Suroccidente Colombiano. Palmira: Universidad Nacional de Colombia sede Palmira.
FAO (2007). Adaptation to climate change in agriculture, forestry and fisheries: perspective, framework and priorities. Recuperado de: http://www.fao.org/clim/
FAO (2010). Agricultura “climáticamente inteligente” Políticas, prácticas y financiación para la seguridad alimentaria, adaptación y mitigación.Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia: Viale delle Terme di Caracalla.
FAO (2013). Nuevo informe sobre el hambre. Recuperado de: http://www.fao.org/news/story/es/item/161867/icode/
FAO (2013). La FAO salvaguarda el medio ambiente mundial: Adaptación de la agricultura al cambio climático. Recuperado de: http://www.fao.org/fileadmin/templates/tci/pdf/backgroundnotes/webposting_SP.pdf
FAO (2014). Cambio climático. Recuperado de: www.fao.org/climatechange/es
Gornall, J., Betts, R., Burke, E., Clark, R. & Camp, J. (2010). Implications of climate change for agricultural productivity in the early twenty-first century.Philosophical Transactions of the Royal. Society B: Biological Sciences, 365, 2973–2989.
Houghton JT, Jenkins GJ, Ephraums JJ (eds.) (1990). Climatic Change: The IPCC Scientific Assessment. Cambridge, U. K.: Cambridge University Press.
Howden S.M. & O’Leary G.J. (1997). Evaluating options to reduce greenhouse gas emissions from an Australian temperate wheat cropping system.Environ Modell Software, 12,169–76.
IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Solomon, S., D. Qin, M. Manning, Z. Chen, M. arquis, K.B. Averyt, M.Tignor and H.L. Miller(eds.). University Press, Cambridge, United Kingdom and New York, NY, USA.
IPPC (2013). Climate Change: Tehe Physical Science Basis. Contribution of Working Group I to the Fifth (AR5) Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker T.F., Dahe Q., Platnner, G.K., Tignor, M.B., Allen, S.K., Boschung, J., Nauels, A., Xia Y., Bex V., Midgley P.M. (eds.) University Press, Cambridge, United Kingdom and New York, NY, USA.
Jaggard, K.W., Qi, A. & Ober, E.S. (2010). Possible changes to arable crop yields by 2050. Philos Trans R Soc Lond Biol Sci. 365(1554), 2835-2851.
Lobell, D. & Bruke, M. (2010). Climate Change Change and Food Security: Adapting Agriculture to a Warmer World. London, New York: Springer Dordrecht, Heidelberg.
McGrath, J.M. & Lobell, D.B. (2011). An independent method of deriving the carbon dioxide fertilization effect in dry conditions using historical yield data from wet and dry years. Global Change Biology, 17, 2689–2696.
Maxted, N. & Kell, S.P. (2009). Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs. Background Study Paper No. 39. Commission on Genetic Resources for Food and Agriculture, FAO, Rome, Italy.
Recuperado de: http://typo3.fao.
Maxted, N., Kell, S.P., Ford-Lloyd, B.V., Dulloo, M.E. & Toledo, A. (2012). Toward the systematic conservation of global crop wild relative diversity. Crop Sciences, 52, 774–785.
Parry, M.L., Rosenzweig, C., Iglesias, A., Livermore, M. & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socioeconomic scenarios. Global Environ. Change, 14, 53-67.
Reddy, V.R. & Pachepsky, Y.A. (2000). Predicting crop yields under climate change conditions from monthly GCM weather projections. Environ Modell Software, 15,79–86.
Suppiah, R., Hennessy, K.J. & Whetton, P.H. (2007). Australian climate change projections derived from simulations performed for the IPCC4th assessment report. Aust Meteorol Mag. 56, 131–52.
Zeigler, R. S. (2013). Food security, climate change and genetic Resources In: Plant genetic resources and climate change / edited by Michael Jackson, Brian Ford-Lloyd and Martin Parry.