Sustainable management of agro-industrial by-products and technological bioconversion strategies
PDF (Español (España))
XML (Español (España))

Keywords

Abonos orgánicos
Biorrefinería
Caña de azúcar
Cítricos
Naranja
Zonificación agroecológica Agroecological zone
Biorefinery
Citrus
Orange
Organic biofertilizers
Sugar cane

How to Cite

Debernardi-Vázquez, T. de J., & Aguilar-Rivera, N. (2020). Sustainable management of agro-industrial by-products and technological bioconversion strategies. Revista Colombiana De Investigaciones Agroindustriales, 7(2), 22–31. https://doi.org/10.23850/24220582.2249

Abstract

In order to evaluate sustainable strategies to obtain solid biofuel and fertilizers from agroindustrial
by-products in contrast to the agroecological zoning and expansion of crops in Veracruz, Mexico,
drying methods with orange peels, sugarcane bagasse and crop residues were tested. The experiments to obtain a solid biofuel with 12.28% humidity in 30 days. Six fertilizer production treatments in plastic containers from 30 to 90 days were evaluated using by-products: orange peel, cachaça, stillage, molasses, ashes, manure, sugar cane crop residues and edible mushroom production through composting techniques, vermicomposting and bocashi. Fertilizers with pH between 5.4 and 12.0, 3% to 70% of M.O. and C / N ratio from 8 to 40. The agroecological zoning was carried out with the Maxent software, determining that the geographic regions with the greatest aptitude for citrus and sugar cane crops are located in the Mexican southeast and in particular the state of Veracruz. For sugarcane, the limiting factors for productivity as raw material for biorefineries are related to access to water (rainfall) and explain 57.1% of the simulation. In the case of citrus, the factors are related to temperature, rainfall and topography, which together impact 44.5%.

https://doi.org/10.23850/24220582.2249
PDF (Español (España))
XML (Español (España))

References

Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Alami, I. T. 2018. Composting parameters and compost quality: a literature review. Organic Agriculture, 8(2), 141-158. https://doi.org/10.1007/s13165-017-0180-z

Barrios, E.; Gemmill-Herren, B.; Bicksler, A.; Siliprandi, E.; Brathwaite, R.; Moller, S.; Tittonell, P. 2020. The 10 Elements of Agroecology: enabling transitions towards sustainable agriculture and food systems through visual narratives. Ecosystems and People, 16(1), 230-247. https://doi.org/10.1080/26395916.2020.1808705

Barthod J.; Rumpel C.; Calabi-Floody M.; Mora M. L.; Bolan N. S.; Dignac M. F. 2018. Adding worms during composting of organic waste with red mud and fly ash reduces CO2 emissions and increases plant available nutrient contents. Journal of environmental management, 222, 207-215. https://doi.org/10.1016/j.jenvman.2018.05.079

Bhat S. A.; Singh J.; Vig A. P. 2018. Earthworms as organic waste managers and biofertilizer producers. Waste and biomass valorization, 9(7), 1073-1086. https://doi.org/10.1007/s12649-017-9899-8

Borges L. D. A. B.; Ramos M. L. G.; Fernandes P. M.; Carneiro M. A. C.; Silva, A. M. M. 2019. Organic cultivation of sugarcane restores soil organic carbon and nitrogen. Organic Agriculture, 9(4), 435-444. https://doi.org/10.1007/s13165-018-0234-x

Carvalho, F. P. 2006. Agriculture, pesticides, food security and food safety. Environmental science & policy, 9(7-8), 685-692. https://doi.org/10.1016/j.envsci.2006.08.002

CONADESUCA. 2019. 6° Informe estadístico del sector agroindustrial de la caña de azúcar en México, zafras 2009-2010/2018-2019. Secretaría de agricultura y desarrollo rural. Gobierno de México. México. 125 p. https://www.gob.mx/conadesuca/es/articulos/6-informe-estadistico-del-sector-agroindustrial-de-la-cana-de-azucar-en-mexico?idiom=es

Cruz-Cárdenas G.; López-Mata L.; Ortiz-Solorio C. A.; Villaseñor J. L.; Ortiz E.; Silva, J. T.; Estrada-Godoy F. 2014. Interpolation of Mexican soil properties at a scale of 1: 1,000,000. Geoderma, 213, 29-35. https://doi.org/10.1016/j.geoderma.2013.07.014

Debernardi-Vázquez, T. de J.; Aguilar-Rivera, N.; Nuñez-Pastrana, R. 2020. Composting of byproducts from the orange (Citrus sinensis (L.) Osbeck) and sugarcane (Saccharum spp. hybrids) agroindustries. Ingeniería e Investigación, 40(3). https://doi.org/10.15446/ing.investig.v40n3.82877

De la Torre I.; Martin-Domínguez V.; Acedos M. G.; Esteban J.; Santos V. E.; Ladero, M. 2019. Utilisation/upgrading of orange peel waste from a biological biorefinery perspective. Applied microbiology and biotechnology, 103(15), 5975-5991. https://doi.org/10.1007/s00253-019-09929-2

Dotaniya M. L.; Datta S. C.; Biswas D. R.; Dotaniya C. K.; Meena B. L.; Rajendiran S.; Lata M. 2016. Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. International Journal of Recycling of Organic Waste in Agriculture, 5(3), 185-194. https://doi.org/10.1007/s40093-016-0132-8

Ghorbani, R.; Koocheki, A.; Brandt, K.; Wilcockson, S.; Leifert, C. 2010. Organic agriculture and food production: Ecological, environmental, food safety and nutritional quality issues. In: Sociology, organic farming, climate change and soil science. 77-107 pp. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3333-8_4

Hijmans R. J.; Cameron S. E.; Parra J. L.; Jones P. G.; Jarvis A. 2005. Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978. https://doi.org/10.1002/joc.1276

Instituto Nacional de Estadística y Geografía- INEG. 2015. Catálogo Único de Claves de Áreas Geoestadísticas Estatales, Municipales y Localidades – En línea. Consulta y descarga. Gobierno de México. México. http://www.inegi.org.mx/geo/contenidos/geoestadistica/catalogoclaves.aspx

Joglekar S. N.; Pathak P. D.; Mandavgane; S. A.; Kulkarni, B. D. 2019. Process of fruit peel waste biorefinery: a case study of citrus waste biorefinery, its environmental impacts and recommendations. Environmental Science and Pollution Research, 1-10. https://doi.org/10.1007/s11356-019-04196-0

López Bravo, E.; Rivera, A.; Javier, A.; Herrera-Suárez, M.; González-Cueto, O.; García de la Figal Costales, A. 2017. Propiedades de un compost obtenido a partir de residuos de la producción de azúcar de caña. Centro Agrícola, 44(3), 49-55. http://scielo.sld.cu/pdf/cag/v44n3/cag07317.pdf

Martínez-Salvador; L. E. M. 2018. Technological capacities in the agroindustry in México. Analytical framework for research it. Revista Análisis Económico, 33(84), 169-189. https://www.redalyc.org/jatsRepo/413/41361009009/41361009009.pdf

Medina-Salas, D.; Giraldi-Díaz, M. R.; Castillo-González, E.; Morales-Mendoza, L. E. 2020. Valorization of orange peel waste using precomposting and vermicomposting processes. Sustainability, 12(18), 7626. https://doi.org/10.3390/su12187626

Mohammed, M.; Donkor, A.; Ozbay, I. 2018. Bio-drying of biodegradable waste for use as solid fuel: a sustainable approach for green waste management. Agricultural Waste and Residues, 89. https://doi.org/10.5772/intechopen.77957

Negro, V.; Ruggeri, B.; Fino, D.; Tonini, D. 2017. Life cycle assessment of orange peel waste management. Resources, Conservation and Recycling, 127, 148-158. https://doi.org/10.1016/j.resconrec.2017.08.014

NMX-FF-109-SCFI-2008. Humus de lombriz (lombricomposta)-especificaciones y métodos de prueba. Diario Oficial de la Federación. Gobierno de México. Estados Unidos Mexicanos. http://dof.gob.mx/nota_detalle.php?codigo=5044562&fecha=10/06/2008

NORMA Oficial Mexicana. NOM-061-SEMARNAT-2011. Que establece los criterios para clasificar a los Residuos de Manejo Especial y determinar cuáles están sujetos a Plan de Manejo; el listado de los mismos, el procedimiento para la inclusión o exclusión a dicho listado; así como los elementos y procedimientos para la formulación de los planes de manejo. Diario Oficial de la Federación. Gobierno de México. Estados Unidos Mexicanos http://dof.gob.mx/nota_detalle.php%3Fcodigo%3D5286505%26fecha%3D01/02/2013

Quiroz, M.; Céspedes, C. 2019. Bokashi as an amendment and source of nitrogen in sustainable agricultural systems: a review. Journal of Soil Science and Plant Nutrition, 19(1), 237-248. https://doi.org/10.1007/s42729-019-0009-9

Satari, B.; Karimi, K. 2018. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resources, Conservation and Recycling, 129, 153-167. https://doi.org/10.1016/j.resconrec.2017.10.032

Senthilkumar, K.; Kumar, M. N.; Devi, V. C.; Saravanan, K.; Easwaramoorthi, S. 2020. Agro-Industrial waste valorization to energy and value added products for environmental sustainability. In: Biomass Valorization to Bioenergy. 1-9 p. Springer, Singapore. https://doi.org/10.1007/978-981-15-0410-5_1

Soberón, J.; Peterson, A. T. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1–10. https://doi.org/10.17161/bi.v2i0.4

Soto-Paz, J.; Oviedo-Ocaña, E. R.; Manyoma-Velásquez, P. C.; Torres-Lozada, P.; Gea, T. 2019. Evaluation of mixing ratio and frequency of turning in the co-composting of biowaste with sugarcane filter cake and star grass. Waste Management, 96(1), 86-95. https://doi.org/10.1016/j.wasman.2019.07.015

Teigiserova, D. A.; Hamelin, L.; Thomsen, M. 2019. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resources, Conservation and Recycling, 149, 413-426. https://doi.org/10.1016/j.resconrec.2019.05.003

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2020 Revista Colombiana de Investigaciones Agroindustriales

Downloads

Download data is not yet available.