Hydration kinetics of four quinoa (Chenopodium quinoa Willd.) varieties
HTML (Español (España))


Quinoa grain
Fick’s second law
Activation energy Granos de quinua
segunda ley de Fick
energía de activación Quinoa grain
Fick’s second law
Activation energy

How to Cite

Pumacahua Ramos, A., Limaylla Guerrero, K. M., Telis Romero, J., & Lopes Filho, J. F. (2016). Hydration kinetics of four quinoa (Chenopodium quinoa Willd.) varieties. Revista Colombiana De Investigaciones Agroindustriales, 3(1), 23–33. https://doi.org/10.23850/24220582.348


The effect of time, temperature and varieties were analyzed during kinetics hydration of quinoa grains and some physical properties were determined. Quinoa grain varieties Kancolla, Salcedo Inia, Blanca de Juli and Pasankalla were used in the study. The hydration was performed in triplicate with 25 g of grain immersed into a solution with 0.55% lactic acid and 0.2% SO2, three temperatures (30, 40 and 50°C) at seven time intervals from 0 to 6 hours were considered to determine moisture of the grains. Moisture data were adjusted to empiric model of Peleg and to the diffusion model based on the Fick’s second law. Effective diffusivity as well as activation energy of the water absorption was also determined. The data were submitted to analyses of variance (ANOVA) and Tukey’s means difference test at 5% probability. Models adjustments were evaluated through determination coefficient (R2) and mean quadratic error (RMSE). Physical properties of Pasankalla variety shown different values compared with white varieties. Peleg’s model constants K1 ranged from 28 to 65.8 (s/%) and K2 from 0.004 to 0.008 (1/%). The effective diffusivity ranged from 2.594 x 10-11 to 8.180 x 10-11 m2.s-1 and activation energy from 210.5 to 1648.5 kJ.k-1.

Para citar este artículo

Pumacahua, A., Limaylla, K., Telis, J. y Lopes, J. (2016). Hydration kinetics of four quinoa (Chenopodium quinoa Willd.) varieties. Rev. Colomb. Investig. Agroindustriales, 3(1), 23-33. DOI: http://dx.doi.org/10.23850/24220582.348
HTML (Español (España))


AACC-American Association of Cereal Chemistry. (2000). Aproved methods. Saint Paul, MN: American Association of Cereal Chemistry.

Alvarado, J. de D. (2012). Propiedades termodinámicas relacionadas con el agua constitutiva de alimentos. (Grafitext, Ed.) (1st ed.). Ambato, Ecuador.

Cox, M. J., MacMasters, M. M. & Hilbert, G. E. (1944). Effect of sulfurous acid steep in corn wet milling. Cereal Chemistry, 21, 447–465.

Crank, J. (1975). Mathematic of Diffusion. Oxford, USA. (2nd ed.). London.

Khazaei, J. & Mohammadi, N. (2009). Effect of temperature on hydration kinetics of sesame seeds (Sesamum indicum L.). J Food Eng, 91(4), 542–552. https://doi.org/10.1016/j.jfoodeng.2008.10.010

Lopes Filho, J. F., Ramos, A. P. & Telis-Romero, J. (2006). Water, sulfur dioxide and lactic acid difusivities in corn grains during steeping for wet milling. Braz J Food Technol, 9(4), 257–263.

Manzoni, M. S. J., Kronka, S. N. & Lopes Filho,J. F. (2002). Effect of steeping conditions (sulfur dioxide, lactic acid, and temperature) on starch yield, starch quality and germ quality from the intermittent milling and dynamic steeping process (IMDS) for a Brazilian corn hybrid. Cereal Chem, 79(1), 120–124.


Marabi, A. & Saguy, I. S. (2004). Effect of porosity on rehydration of dry food particulates. J Sci Food Agr, 84, 1105–1110. https://doi.org/10.1002/jsfa.1793

Maskan, M. (2002). Effect of processing on hydration kinetics of three wheat products of the same variety. J Food Eng, 52(4), 337–341.

Peleg, M. (1988). An Empirical Model for the Description of Moisture Sorption Curves. J Food Eng, 53(4), 1216–1217 e 1219.

Piergiovanni, A. R. (2011). Kinetic of water adsorption in common bean: Considerations on the suitability of Peleg’S model for describing bean hydration. J Food Process Pres, 35(4), 447–452. https://doi.org/10.1111/j.1745-4549.2010.00486.x

Prasad, K., Vairagar, P. R., & Bera, M. B. (2010). Temperature dependent hydration kinetics of Cicerarietinum splits. Food Res Int, 43, 483–488. http://dx.doi.org/10.1016/j.foodres.2009.09.038

Repo-Carrasco, R., Espinoza, C. & Jacobsen, S. E. (2003). Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Int, 19(1–2),179–189. https://doi.org/10.1081/FRI-120018884

Resende, O. & Corrêa, C. (2007). Modelagem matemática do processo de hidratação de sementes de feijão. Acta Sci. Agron., 29(3), 373–378. http://dx.doi.org/10.4025/actasciagron.v29i3.387

Resio, C. N., Aguerre, R. J. & Suárez, C. (2006). Hydration kinetics of amaranth grain. J Food Eng, 72(3), 247–253.


Resio, C. N., Aguerre, R. J. & Suárez, C. (2003). Study of some factors affecting water absorption by amaranth grain during soaking. J Food Eng, 60(4), 391–396. https://doi.org/10.1016/S0260-8774(03)00062-1

Shandera, D. L., Parkhurst, A. M. & Jackson, D. S. (1995). Interactions of sulfur dioxide, lactic acid, and temperature during simulated corn wet milling. Cereal Chem, 72, 371–378.

Solomon, W. K. (2009). Hydration kinetics of roasted lupin (Lupinus Albus) Seeds. Journal of Food Processing and Preservation, 33, 214–225. https://doi.org/10.1111/j.1745-4549.2008.00294.x

Sukhorukov, A. P. & Zhang, M. (2013). Fruit and seed anatomy of Chenopodium and related genera (Chenopodioideae, Chenopodiaceae/ Amaranthaceae):Implications for evolution and taxonomy. Plos One, 8(4), 1–18. https://doi.org/doi:10.1371/journal.pone.0061906

Vilche, C., Gely, M. & Santalla, E. (2003). Physical properties of quinoa seeds. Biosystems Eng, 86(1), 59–65. https://doi.org/10.1016/S1537-5110(03)00114-4


Download data is not yet available.