3D printed food system development based on nanoencapsulated and micro powder nutritious ingredients
PDF (Español (España))
XML (Español (España))


3D printing
powder food
food matrix
nanoencapsulation impresión 3D
alimentos en polvo
matrices alimentarias

How to Cite

Mejía-Vásquez, H.-D. ., & Hernández-Sandoval, G.-R. . (2021). 3D printed food system development based on nanoencapsulated and micro powder nutritious ingredients. Revista Colombiana De Investigaciones Agroindustriales, 8(1), 64–79. https://doi.org/10.23850/24220582.3749


The products developed are mainly based on the mixture of powdered food ingredients obtained through the spry dry technology that together with a liquid ingredient form a homogeneous mixture reaches a fluidity behavior inside the printer cartridge during the extrusion process, the deposited
or extruded material must present a good balance between fluidity and rigidity to support the load of the deposited layers, thus presenting a structurally stable print. Subsequently, production cost studies of the products were carried out and sensory and rheological analyses were performed.

PDF (Español (España))
XML (Español (España))


Bitfab (2019). Impresoras 3D de comida. Recuperado de https://bitfab.io/es/blog/impresoras-3d-comida/

Cohen, D.; Lipton, J.; Cutler, M.; Coulter, D.; Vesco, A.; Lipson, H. (2009). Hydrocolloid printing: a novel platform for customized food production. 20th Annual International Solid Freeform Fabrication Symposium, Austin, TX.

Godoi, F. C.; Prakash, S.; Bhandari, B. R. (2016). 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179, 44-54. https://doi.org/10.1016/j. jfoodeng.2016.01.025

Horvath, J. A. (2014). Brief history of 3D printing. En Mastering 3D Printing (pp. 3-10). Berkeley, CA. Apress. https://doi.org/10.1007/978-1-4842- 0025-4_1

O’Brien, N. M.; O’Connor, T. P.; O’Callaghan, J.; Dobson, A. D. W. (2004). Toxins in Cheese. En P. F. Fox; P. L. H. McSweeney; T. M. Cogan; T. P. Guinee (Eds.), Cheese: Chemistry, Physics and Microbiology (pp. 561-571). Cambridge, MA: Academic Press. https://doi.org/10.1016/S1874-558X(04)80082-4

Pérez, B.; Nykvist, H.; Brøgger, A. F.; Larsen, M. B.; Falkeborg, M. F. (2019). Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review. Food Chemistry, 287, 249.257. https://doi.org/10.1016/j.foodchem.2019.02.090

Piyush, R. K.; Kumar, R. (2020). 3D printing of food materials: A state of art review and future applications. Materials Today: Proceedings, 33(Parte 3), 1463-1467. https://doi.org/10.1016/j. matpr.2020.02.005

Tarazona-Díaz, M. (2018). Nutritional, microbiological and sensorial characterization of fresh cheese. Nutrición Clínica y Dietética Hospitalaria, 38(3), 74- 79. https://doi.org/10.12873/383tarazona

Zhu, S.; Stieger, M. A.; van der Goot, A. J.; Schutyser, M. A. I. (2019). Extrusion-based 3D printing of food pastes: Correlating rheological properties with printing behaviour. Innovative Food Science & Emerging Technologies, 58, 102214. https://doi. org/10.1016/j.ifset.2019.102214

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Download data is not yet available.