Diferentes métodos de escaldado y su aplicación en frutas y verduras
PDF
XML

Palabras clave

antioxidant
bioactive compounds
color
enzymes
fruits
vegetables antioxidantes
compuestos bioactivos
color
enzimas
frutas
verduras

Cómo citar

Tigreros, J. A., Parra Londoño, S. ., Martínez Girón, J. ., & Ordoñez Santos, L. E. (2021). Diferentes métodos de escaldado y su aplicación en frutas y verduras. Revista Colombiana De Investigaciones Agroindustriales, 8(1), 50–63. https://doi.org/10.23850/24220582.3710

Resumen

El escaldado como pretratamiento en diversos procesos de transformación alimentaria en productos de consumo masivo ha demostrado ser eficaz tanto para garantizar la inocuidad como para
mantener o incrementar los compuestos bioactivos. Las frutas y verduras poseen una gama de nutrientes, entre los que se destacan las fibras dietéticas, polifenoles, vitaminas C, A, B y E, carotenoides, potasio y hierro, entre otros. Aunque una matriz alimentaria es compleja, los productos resultantes de la transformación de estos alimentos pueden ver afectadas sus características sensoriales y nutricionales por una inadecuada aplicación del escaldado. Los objetivos de este artículo fueron revisar (1) los tipos de escaldado, (2) los propósitos del escaldado y (3) la evaluación de la efectividad del proceso de escaldado.

https://doi.org/10.23850/24220582.3710
PDF
XML

Citas

Agüero, M. V.; Ansorena, M. R.; Roura, S. I.; del Valle, C. E. (2008). Thermal inactivation of peroxidase during blanching of butternut squash. LWT-Food Science and Technology, 41(3), 401-407. https://doi.org/10.1016/j.lwt.2007.03.029

Alwan, A. (2011). Global status report on noncommunicable diseases 2010. Organización Mundial de la Salud. https://doi.org/https://www.who.int/about/licensing/copyright_form/en/index.html

Atuonwu, J. C.; Tassou, S. A. (2018). Quality assurance in microwave food processing and the enabling potentials of solid-state power generators: A review. Journal of Food Engineering, 234, 1-15. https://doi.org/10.1016/j.jfoodeng.2018.04.009

Badui, S. (2006). Química de los alimentos (4ª ed.). Ciudad de México: Pearson.

Bai, J.-D.; Sun, D.-W.; Xiao, H.-W.; Mujumdar, A. S.; Gao, Z.-J. (2013). Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innovative Food Science & Emerging Technologies, 20, 230-237. https://doi.org/10.1016/j.ifset.2013.08.011

Baker, P.; Friel, S. (2014). Processed foods and the nutrition transition: Evidence from Asia. Obesity Reviews, 15(7), 564-577. https://doi.org/10.1111/obr.12174

Bascaya, D.; Demirdoven, A. (2015). The effects of microwave blanching conditions on carrot slices: optimization and comparison. Journal of Food Processing and Preservation, 39(6), 2188-2196. https://doi.org/10.1111/jfpp.12463

Behera, G.; Rayaguru, K.; Nayak, P. K. (2017). Current Research in Nutrition and Food Science Effect of Microwave Blanching on Slice Thickness and Quality Analysis of Star Fruit. Current Research in Nutrition and Food Science Journal, 5(3), 274-281.https://doi.org/10.12944/CRNFSJ.5.3.12

Block, G.; Patterson, B.; Subar, A. (1992). Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence. Nutrition and Cancer 18(1), 1-29. https://doi.org/10.1080/01635589209514201

Bloom, D.; Cafiero, E.; Jané-Llopis, E.; Abrahams-Gessel, S.; Bloom, L.; Fathima, S.; …Weinstein, C. (2011). The Global Economic Burden of Non-communicable Diseases. Foro Económico Mundial. http://www3. w e f o r u m . o r g / d o c s / W E F _ H a r v a r d _ H E _onomicBurdenNonCommunicableDiseases_2011.pdf

Bonnechère, A.; Hanot, V.; Jolie, R.; Hendrickx, M.; Bragard, C.; Bedoret, T.; Loco, J. (2012). Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach. Food Control, 25, 397-406. https://doi.org/10.1016/j.foodcont.2011.11.010

Chandrasekaran, S.; Ramanathan, S.; Basak, T. (2013). Microwave food processing-A review. Food Research International, 52(1), 243-261. https://doi.org/10.1080/19443994.2015.1079258

Datta, A. K.; Davidson, P. M. (2000). Microwave and Radio Frequency Processing. Journal of Food Science, 65, 32-41. https://doi.org/10.1111/j.1750-3841.2000.tb00616.x

De La Vega-Miranda, B.; Santiesteban-López, N. A.; López-Malo, A.; Sosa-Morales, M. E. (2012). Inactivation of Salmonella Typhimurium in fresh vegetables using water-assisted microwave heating. Food Control, 26(1), 19-22. https://doi.org/10.1016/j.foodcont.2012.01.002

Dorantes-Alvarez, L.; Jaramillo-Flores, E.; González, K.; Martinez, R.; Parada, L. (2011). Blanching peppers using microwaves. Procedia Food Science, 1, 178-183. https://doi.org/10.1016/j.profoo.2011.09.028

Fellow, P. (1994). Tecnología del procesado de los alimentos. Zaragoza: Acribia.

Francis, F. J. (1995). Quality as influenced by color. Food Quality and Preference, 6(3), 149-155. https://doi.org/10.1016/0950-3293(94)00026-R.

Frazier, W.; Westhoff, D. (1993). Microbiología de los alimentos (4a ed.). Zaragoza: Acribia.

Gliszczyńska-Świgło, A.; Ciska, E.; Pawlak-Lemańska, K.; Chmielewski, J.; Borkowski, T.; Tyrakowska, B. (2006). Changes in the content of healthpromoting compounds and antioxidant activity of broccoli after domestic processing. Food Additives

and Contaminants, 23(11), 1088-1098. https://doi.org/10.1080/02652030600887594

Hadidi, M.; Ibarz, A.; Conde, J.; Pagan, J. (2019). Optimisation of steam blanching on enzymatic activity, color and protein degradation of alfalfa (Medicago sativa) to improve some quality characteristics of its edible protein. Food Chemistry, 276, 591-598. https://doi.org/10.1016/j.foodchem.2018.10.049

Huang, Y.; Sheng, J.; Yang, F.; Hu, Q. (2007). Effect of enzyme inactivation by microwave and oven heating on preservation quality of green tea. Journal of Food Engineering, 78(2), 687-692. https://doi.org/10.1016/j.jfoodeng.2005.11.007

Hurtado, N. H.; Morales, A. L.; González-Miret, M. L.; Escudero-Gilete, M. L.; Heredia, F. J. (2009). Colour, pH stability and antioxidant activity of anthocyanin rutinosides isolated from tamarillo fruit (Solanum betaceum Cav.). Food Chemistry, 117(1), 88-93. https://doi.org/10.1016/j.foodchem.2009.03.081

Ismail, A.; Marjan, Z. M.; Foong, C. W. (2004). Total antioxidant activity and phenolic content in selected vegetables. Food Chemistry, 87(4), 581-586. https://doi.org/10.1016/j.foodchem.2004.01.010

Jabbar, S.; Abid, M.; Hu, B.; Wu, T.; Muhammad, M.; Lei, S.; …. Zeng, X. (2014). Quality of carrot juice as in fl uenced by blanching and sonication treatments. LWT-Food Science and Technology, 55(1), 16-21. https://doi.org/10.1016/j.lwt.2013.09.007.

Lee, F. (1958). The Blanching Process. Advances in Food Research, 8(C), 63-109. https://doi.org/10.1016/S0065-2628(08)60018-X

Lee, S.; Choi, Y.; Jeong, H. S.; Lee, J.; Sung, J. (2018). Effect of different cooking methods on the content of vitamins and true retention in selected vegetables. Advances in Food Research, 27(2), 333-342. https://doi.org/10.1007/s10068-017-0281-1

Liburdi, K.; Benucci, I.; Esti, M. (2019). Effect of microwave power and blanching time in relation to different geometric shapes of vegetables. LWT, 99, 497-504. https://doi.org/10.1016/j.lwt.2018.10.029

Lisiewska, J.; Skoczen-Stupska, S.; Kmiecik, W.(2009). Content of amino acids and the quality of protein in Brussels sprouts, both raw and prepared for consumption. International Journal of Refrigeration, 32(2), 272-278. https://doi.org/10.1016/j.ijrefrig.2008.05.011

Lisiewska, Z.; Kmiecik, W. (1996). Effects of level of nitrogen fertilizer, processing conditions and period of storage of frozen broccoli and cauliflower on vitamin C retention. Food Chemistry, 57(2), 267-270. https://doi.org/10.1016/0308-8146(95)00218-9

Liu, Z.-L.; Liu, J.; Bai, W.; Yang, J.; Wang, L.; Deng., L.;… Xiao, H.-W. (2019). Effect of high-humidity hot air impingement blanching (HHAIB) and drying parameters on drying characteristics and quality of broccoli florets. Drying Technology, 37(10), 1251-1264.

Mafart, P. (1994). Ingeniería industrial alimentaria (Vol. 1). Zaragoza: Acribia.

Marx, M.; Stuparic, M.; Schieber, A.; Carle, R. (2003). Effects of thermal processing on trans–cis-isomerization of β-carotene in carrot juices and carotene-containing preparations. Food Chemistry, 83, 609-617. https://doi.org/doi:10.1016/S0308-8146(03)00255-3

Mukherjee, S.; Chattopadhyay, P. K. (2007). Whirling bed blanching of potato cubes and its effects on product quality. Journal of Food Engineering, 78(1), 52-60. https://doi.org/10.1016/j.jfoodeng.2005.09.001

Nakilcioglu-Taş, E.; Otleş, S. (2018). Degradation kinetics of bioactive compounds and antioxidant capacity of Brussels sprouts during microwave processing. International Journal of Food Properties, 20(3), S2798-S2809. https://doi.org/10.1080/10942912.2017.1375944

Organización de las Naciones Unidas para la Alimentación y la Agricultura (2018). Base de datos FaoStat. Recuperado de http://faostat.fao.org

Organización Mundial de la Salud (2016). Enfermedades no Transmisibles. Recuperado de: www.who.int/

nmh/countries/col_en.pdf?ua=1

Ordóñez-Santos, L. E.; Martínez-Girón, J.; Arias- Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry, 233, 96-100. https://doi. org/10.1016/j.foodchem.2017.04.114

Oszmiański, J.; Wolniak, M.; Wojdyło, A.; Wawer, I. (2008). Influence of apple purée preparation and storage on polyphenol contents and antioxidant activity. Food Chemistry, 107(4), 1473-1484). https://doi.org/10.1016/j.foodchem.2007.10.003

Palma-Orozco, G.; Sampedro, J. G.; Ortiz-Moreno, A.; Nájera, H. (2012). In situ Inactivation of Polyphenol Oxidase in Mamey Fruit (Pouteria sapota) by Microwave Treatment. Journal of Food Science, 77(4), 359-365. https://doi.org/10.1111/ j.1750-3841.2012.02632.x

Phungamngoen, C.; Chiewchan, N.; Devahastin, S. (2013). Effects of various pretreatments and drying methods on Salmonella resistance and physical properties of cabbage. Journal of Food Engineering, 115(2), 237-244. https://doi. org/10.1016/j.jfoodeng.2012.10.020

Regier, M.; Knoerzer, K.; Schubert, H. (2017). Introducing microwave-assisted processing of food. En M. Regier; K. Knoerzer; H. Schubert (Eds.), The Microwave Processing of Foods (2a ed., pp. 1-22). Nueva York, NY: Elsevier. https://doi. org/10.1016/B978-0-08-100528-6.00001-2

Roopa, R. A.; Mantelingu, K.; Rangappa, K. S. (2016). Evaluation of peroxidase assay and effect of thermal blanching on sapota and fig fruits. Chemical Data Collections, 3-4, 46-57. https://doi. org/10.1016/j.cdc.2016.07.001

Rossi, M.; Giussani, E.; Morelli, R.; Lo Scalzo, R.; Nanic, R. C.; Torreggiani, D. (2003). Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Research International, 36(9-10), 999-1005. https://doi. org/10.1016/j.foodres.2003.07.002

Schubert, H.; Regier, M. (2005). Dielectric properties of foods. En J. Tang (Ed.), The microwave processing of foods (pp. 22-38). Sawston: Woodhead Publishing Limited.

Severini, C.; Baiano, A.; De Pilli, T.; Carbone, B.; Derossi, A. (2005). Combined treatments of blanching and dehydration: study on potato cubes. Journal of Food Engineering, 68, 289-296. https://doi.org/10.1016/j.jfoodeng.2004.05.045

Stamatopoulos, K.; Katsoyannos, E.; Chatzilazarou, A.; Konteles, S. J. (2012). Improvement of oleuropein extractability by optimising steam blanching process as pre-treatment of olive leaf extraction via response surface methodology. Food Chemistry, 133(2), 344-351. https://doi. org/10.1016/j.foodchem.2012.01.038

Tao, Y. M.; Wang, S.; Luo, H. L.; Yan, W. W. (2018). Peroxidase from jackfruit: Purification, characterization and thermal inactivation. International Journal of Biological Macromolecules, 114, 898-905. https://doi.org/10.1016/j. ijbiomac.2018.04.007

Tao, Y. M.; Yao, L. Y.; Qin, Q. Y.; Shen, W. (2013). Purification and characterization of polyphenol oxidase from jackfruit (Artocarpus heterophyllus) bulbs. Journal of Agricultural and Food Chemistry, 61(51), 12662-12669. https://doi.org/10.1021/ jf403828e

The High Level Panel of Experts on Food Security and Nutrition (2017). Nutrition and food systems. Recuperado de www.fao.org/cfs/cfs-hlpe

Tomadoni, B.; Cassani, L.; Viacava, G.; Moreira, R.; Ponce, A. (2017). Effect of ultrasound and storage time on quality attributes of strawberry juice. Journal of Food Process Engineering, 40(5), e12533. https://doi.org/10.1111/jfpe.12533

Uddin, M. S.; Hawlader, M. N. A.; Zhou, L. (2001). Drying Technology: kinetics of ascorbic acid degradation in dried kiwifruits during storage. Drying Technology, 19(2), 437-446. https://doi. org/10.1081/DRT-100102916

Verbeyst, L.; Bogaerts, R.; Van der Plancken, I.; Hendrickx, M.; Van Loey, A. (2013). Modelling of Vitamin C Degradation during Thermal and High-Pressure Treatments of Red Fruit. Food and Bioprocess Technology, 6(4), 1015-1023. https:// doi.org/10.1007/s11947-012-0784-y

Verkempinck, S.; Pallares, A.; Hendrickx, M.; Grauwet, T. (2020). Processing as a tool to manage digestive barriers in plant-based foods: recent advances. Current Opinion in Food Science, 35, 1-9. https:// doi.org/10.1016/j.cofs.2019.11.007

Wang, H.; Karim, M. A.; Vidyarthi, S.; Xie, L.; Liu, Z.-L.; Gao, L.; … Xiao, H.-W. (2021). Vacuum-steam pulsed blanching (VSPB) softens texture and enhances drying rate of carrot by altering cellular structure, pectin polysaccharides and water state. Innovative Food Science & Emerging Technologies, 74, 102801. https://doi.org/10.1016/j. ifset.2021.102801

Wang, H.; Meng, J.-S.; Raghavan, G.S.V.; Orsat, V.; Yu, X.-L.; Liu, Z.-L.; … Xiao, H.-W. (2022). Vacuum-steam pulsed blanching (VSPB) enhances drying quality, shortens the drying time of gingers by inactivating enzymes, altering texture, microstructure and ultrastructure. LWT, 154, 112714. https://doi.org/10.1016/j.lwt.2021.112714

Wang, H.; Zhang, Q.; Mujumdar, A. S.; Fang, X.-M.; Wang, J.; Pei, Y.-P.; … Xiao, H.-W. (2020). High-humidity hot air impingement blanching (HHAIB) efficiently inactivates enzymes, enhances extraction of phytochemicals and mitigates brown actions of chili pepper. Food Control, 111, 1-9. https://doi.org/10.1016/j.foodcont.2019.107050

Weisburger, J. H. (1999). Mechanisms of action of antioxidants as exemplified in vegetables, tomatoes and tea. Food and Chemical Toxicology, 37(9-10), 943-948. https://doi.org/10.1016/ S0278-6915(99)00086-1

Xanthakis, E.; Gogou, E.; Taoukis, P.; Ahrné, L. (2018). Effect of microwave assisted blanching on the ascorbic acid oxidase inactivation and vitamin C degradation in frozen mangoes. Innovative Food Science and Emerging Technologies, 48, 248-257. https://doi.org/10.1016/j.ifset.2018.06.012

Xiao, H. W.; Pan, Z.; Deng, L. Z.; El-Mashad, H. M.; Yang, X. H.; Mujumdar, A. S.; … Zhang, Q. (2017). Recent developments and trends in thermal blanching – A comprehensive review. Information Processing in Agriculture, 4(2), 101-127. https://doi. org/10.1016/j.inpa.2017.02.001

Zheng, H.; Lu, H. (2011). Effect of microwave pretreatment on the kinetics of ascorbic acid degradation and peroxidase inactivation in different parts of green asparagus (Asparagus officinalis L.) during water blanching. Food Chemistry, 128, 1087-1093. https://doi. org/10.1016/j.foodchem.2011.03.130

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.