Pickering emulsions as encapsulation means of bioactive compounds: review
PDF (Português (Brasil))
XML (Português (Brasil))


Pickering emulsions
bioactive compounds
stability emulsões Pickering
compostos bioativos

How to Cite

Guevara-Guerrero, B., Beltrán, C. A., Montero-Montero, J. C., & Valdés-Restrepo, M. P. (2022). Pickering emulsions as encapsulation means of bioactive compounds: review. Revista Colombiana De Investigaciones Agroindustriales, 10(1), 1–12. https://doi.org/10.23850/24220582.5005


Identify the different technical aspects of Pickering emulsions, the importance and application of this technique in the food industry is the main objective of this bibliographic review., depending on the mechanical, physicochemical and stability properties that support food products. A variety of academic databases were used in this review such as Science Direct, Google Scholar, Scielo, Scopus, Elibro, amongst others. As a selection criterion, scientific articles, books, reviews and all the academic material related to the subject which were published since the year 2000 to the current year were taken into account. According to the sources consulted, it was found that this type of emulsion has great potential to be used in the production of dairy products, beverages, condiments and other areas of the food industry. In addition, there is a growing demand for products with biologically active food components in which those emulsions can be applied as encapsulating agents to help to preserving these components, which can bring nutritional and health benefits to consumers. However, further investigation of Pickering emulsions is still required to assess the delivery mechanism, release of bioactives and also compatibility with other components of real food systems.

PDF (Português (Brasil))
XML (Português (Brasil))


Abend, S., Bonnke, N., Gutschner, U., & Lagaly, G. (1998). Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides. Colloid and Polymer Science, 276 (8), 730–737. https://doi.org/10.1007/s003960050303

Albert, C., Beladjine, M., Tsapis, N., Fattal, E., Agnely, F., & Huang, N. (2019). Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. Journal of Controlled Release, 309 (1), 302–332. https://doi.org/https://doi.org/10.1016/j.jconrel.2019.07.003

Álvarez, R., Liendo, L., Vargas, J., & López, de R., Aura. (2009). Estudio de la coalescencia de burbujas en sistemas electrolíticos. Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 24 (3), 33-39. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-40652009000300003&lng=es&tlng=es

Aranberri, I., Binks, B., Clint, J., & Fletcher, P. (2006). Elaboración y caracterización de emulsiones estabilizadas por polímeros y agentes tensioactivos. Revista Iberoamericana de Polímeros, 7 (3). https://reviberpol.files.wordpress.com/2019/08/2006-aranberri.pdf

Arditty, S., Whitby, C. P., Binks, B. P., Schmitt, V., & Leal-Calderon, F. (2003). Some general features of limited coalescence in solid-stabilized emulsions. The European physical journal. E, 11 (3), 273–281. https://doi.org/10.1140/epje/i2003-10018-6

Aveyard, R., Binks, B. P., & Clint, J. H. (2003). Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science, 503–546. https://doi.org/https://doi.org/10.1016/S0001-8686(02)00069-6

Berton-Carabin, C. C., & Schroën, K. (2015). Pickering Emulsions for Food Applications: Background, Trends, and Challenges. Annual Review of Food Science and Technology, 6 (1), 263–297. https://doi.org/10.1146/annurev-food-081114-110822

Rodrigues, C. A. L., Gomes, A., de Figueiredo, F. G., Tibolla, H., Menegalli, F. C., & Lopes, C. R. (2020). Modulating in vitro digestibility of Pickering emulsions stabilized by food-grade polysaccharides particles. Carbohydrate Polymers, 227 (1), 115344. https://doi.org/10.1016/j.carbpol.2019.115344

Dickinson, E. (2012). Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends in Food Science & Technology, 24 (1), 4–12. https://doi.org/https://doi.org/10.1016/j.tifs.2011.09.006

Duffus, L. J., Norton, J. E., Smith, P., Norton, I. T., & Spyropoulos, F. (2016). A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions. Journal of Colloid and Interface Science, 473, 9–21. https://doi.org/https://doi.org/10.1016/j.jcis.2016.03.060

Dukhin, S., Sjöblom, J. & Sæther, Ø. (2006). An Experimental and Theoretical Approach to the Dynamic Behavior of Emulsions. En Sjoblom, J. (Ed.), Emulsions and Emulsion Stability, 106. Second Edition. CRC Press. https://doi.org/10.1201/9781420028089

Dumay, E., Chevalier-Lucia, D., Picart-Palmade, L., Benzaria, A., Gràcia-Julià, A., & Blayo, C. (2013). Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends in Food Science & Technology, 31 (1), 13–26. https://doi.org/https://doi.org/10.1016/j.tifs.2012.03.005

Fu, D., Deng, S., McClements, D. J., Zhou, L., Zou, L., Yi, J., Liu, C., & Liu, W. (2019). Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids, 89, 80–89. https://doi.org/https://doi.org/10.1016/j.foodhyd.2018.10.032

González-Ortiz, D., Pochat-Bohatier, C., Cambedouzou, J., Bechelany, M., & Miele, P. (2020). Current Trends in Pickering Emulsions: Particle Morphology and Applications. Engineering, 6 (4), 468–482. https://doi.org/https://doi.org/10.1016/j.eng.2019.08.017

Gu, R., Li, C., Shi, X., & Xiao, H. (2022). Naturally occurring protein/polysaccharide hybrid nanoparticles for stabilizing oil-in-water Pickering emulsions and the formation mechanism. Food Chemistry, 395, 133641. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.133641

Guo, J., Zhou, Q., Liu, Y.-C., Yang, X.-Q., Wang, J.-M., Yin, S.-W., & Qi, J.-R. (2016). Preparation of soy protein-based microgel particles using a hydrogel homogenizing strategy and their interfacial properties. Food Hydrocolloids, 58, 324–334. https://doi.org/https://doi.org/10.1016/j.foodhyd.2016.03.008

Guo, Q. (2021). Progress in the preparation, stability and functional applications of Pickering emulsion. IOP Conference Series: Earth and Environmental Science, 639 (1), 12028. https://doi.org/10.1088/1755-1315/639/1/012028

Gupta, R., & Rousseau, D. (2012). Surface-active solid lipid nanoparticles as Pickering stabilizers for oil-in-water emulsions. Food & Function, 3 (3), 302–311. https://doi.org/10.1039/C2FO10203J

He, Y., Wu, F., Sun, X., Li, R., Guo, Y., Li, C., Zhang, L., Xing, F., Wang, W., & Gao, J. (2013). Factors that affect Pickering emulsions stabilized by graphene oxide. ACS applied materials & interfaces, 5 (11), 4843–4855. https://doi.org/10.1021/am400582n

Ho, K. W., Ooi, C. W., Mwangi, W. W., Leong, W. F., Tey, B. T., & Chan, E. S. (2016). Comparison of self-aggregated chitosan particles prepared with and without ultrasonication pretreatment as Pickering emulsifier. Food Hydrocolloids, 52, 827-837. https://doi.org/10.1016/j.foodhyd.2015.08.019

Horozov, T., Aveyard, R., Clint, J y Neumann, B. (2005). Particle Zips: Vertical Emulsion Films with Particle Monolayers at Their Surfaces. Langmuir, 21 (6), 2330-2341. https://doi.org/10.1021/la047993p

Jain, S., Winuprasith, T., & Suphantharika, M. (2020). Encapsulation of lycopene in emulsions and hydrogel beads using dual modified rice starch: Characterization, stability analysis and release behaviour during in-vitro digestion. Food Hydrocolloids, 104, 105730. https://doi.org/10.1016/j.foodhyd.2020.105730

Kargar, M., Spyropoulos, F., & Norton, I. (2011). The effect of interfacial microstructure on the lipid oxidation stability of oil-in-water emulsions. Journal of Colloid and Interface Science, 357 (2), 527–533. https://doi.org/10.1016/j.jcis.2011.02.019

Li, H., Wu, C., Yin, Z., Wu, J., Zhu, L., Gao, M., & Zhan, X. (2022). Emulsifying properties and bioavailability of clove essential oil Pickering emulsions stabilized by octadecylaminated carboxymethyl curdlan. International Journal of Biological Macromolecules, 216, 629–642. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.07.029

Linke, C., & Drusch, S. (2018). Pickering emulsions in foods - opportunities and limitations. Critical Reviews in Food Science and Nutrition, 58 (12), 1971–1985. https://doi.org/10.1080/10408398.2017.1290578

Liu, H., Wang, C., Zou, S., Wei, Z., & Tong, Z. (2012). Simple, Reversible Emulsion System Switched by pH on the Basis of Chitosan without Any Hydrophobic Modification. Langmuir, 28, 11017–11024. https://doi.org/10.1021/la3021113

Lu, X., Li, C., & Huang, Q. (2019). Combining in vitro digestion model with cell culture model: Assessment of encapsulation and delivery of curcumin in milled starch particle stabilized Pickering emulsions. International Journal of Biological Macromolecules, 139, 917–924. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.08.078

Manga, M. S., Cayre, O. J., Williams, R. A., Biggs, S., & York, D. W. (2012). Production of solid-stabilised emulsions through rotational membrane emulsification: influence of particle adsorption kinetics. Soft Matter, 8 (5), 1532–1538. https://doi.org/10.1039/C1SM06547E

Matos, M., Laca, A., Rea, F., Iglesias, O., Rayner, M., & Gutiérrez, G. (2018). O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: Stability, rheological behaviour and resveratrol encapsulation. Journal of Food Engineering, 222, 207–217. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2017.11.009

Matos, M., Luque, S., & Gutiérrez, G. (2020). Formulación y estabilidad de emulsiones para encapsulación de biocompuestos. Anales de Química, 116 (2), 69-80. https://analesdequimica.es/index.php/AnalesQuimica/article/view/1184

Mikulcová, V., Bordes, R., & Kašpárková, V. (2016). On the preparation and antibacterial activity of emulsions stabilized with nanocellulose particles. Food Hydrocolloids, 61, 780–792. https://doi.org/https://doi.org/10.1016/j.foodhyd.2016.06.031

Persson, K. H., Blute, I. A., Mira, I. C. (2014). Gustafsson, J. Creation of well-defined particle stabilized oil-in-water nanoemulsions. Colloids Surfaces A, 459, 48−57. https://doi.org/10.1016/j.colsurfa.2014.06.034

Saari, H., Heravifar, K., Rayner, M., Wahlgren, M. and Sjöö, M. (2016), Preparation and Characterization of Starch Particles for Use in Pickering Emulsions. Cereal Chemistry 93 (2), 116-124. https://doi.org/10.1094/CCHEM-05-15-0107-R

Shi, W., Tang, C., Yin, S., Yin, Y., Yang, X., Wu, L., Zhao, Z. (2016). Development and characterization of novel chitosan emulsion films via Pickering emulsions incorporation approach. Food Hydrocolloids, 52 (1), 253-264. https://doi.org/10.1016/j.foodhyd.2015.07.008

Shi, Y., Ye, F., Zhu, Y., & Miao, M. (2022). Development of dendrimer-like glucan-stabilized Pickering emulsions incorporated with β-carotene. Food Chemistry, 385, 132626. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.132626

Tan, P. Y., Tan, T. B., Chang, H. W., Tey, B. T., Chan, E. S., Lai, O. M., Baharin, B. S., Nehdi, I. A. & Tan, C. P. (2018). Effects of storage and yogurt matrix on the stability of tocotrienols encapsulated in chitosan-alginate microcapsules. Food Chemistry, 241, 79-85. https://doi.org/10.1016/j.foodchem.2017.08.075

Tang, Y., Yang, S., Zhang, N., & Zhang, J. (2014). Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose, 21, 335–346. https://doi.org/10.1007/s10570-013-0158-2

Tavernier, I., Wijaya, W., Van der Meeren, P., Dewettinck, K., & Patel, A. R. (2016). Food-grade particles for emulsion stabilization. Trends in Food Science & Technology, 50, 159–174. https://doi.org/10.1016/j.tifs.2016.01.023

Thompson, K. L., Derry, M. J., Hatton, F. L., & Armes, S. P. (2018). Long-term stability of n-alkane-in-water pickering nanoemulsions: Effect of aqueous solubility of droplet phase on Ostwald ripening. Langmuir, 34 (31), 9289-9297.

Timgren, A., Rayner, M., Sjöö, M., & Dejmek, P. (2011). Starch particles for food-based Pickering emulsions. Procedia Food Science, 1, 95–103. https://doi.org/10.1016/j.profoo.2011.09.016

Wang, L. J., Hu, Y. Q., Yin, S. W., Yang, X. Q., Lai, F. R., & Wang, S. Q. (2015). Fabrication and characterization of antioxidant Pickering emulsions stabilized by zein/chitosan complex particles (ZCPs). Journal of agricultural and food chemistry, 63 (9), 2514–2524. https://doi.org/10.1021/jf505227a

Whitby, C. P., Khairul, A. H., & Hughes, J. (2016). Destabilising Pickering emulsions by drop flocculation and adhesion. Journal of colloid and interface science, 465 (1), 158–164. https://doi.org/10.1016/j.jcis.2015.11.063

Winuprasith, T., Khomein, P., Mitbumrung, W., Suphantharika, M., Nitithamyong, A., & McClements, D. J. (2018). Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food Hydrocolloids, 83, 153–164. https://doi.org/https://doi.org/10.1016/j.foodhyd.2018.04.047

Wu, J., & Ma, G.-H. (2016). Recent Studies of Pickering Emulsions: Particles Make the Difference. Small, 12 (34), 4633-4648. https://doi.org/10.1002/smll.201600877

Wu, T., Wang, H., Jing, B., Liu, F., Burns, P. C., & Na, C. (2015). Multi-body coalescence in Pickering emulsions. Nature Communications, 6 (1), 5929. https://doi.org/10.1038/ncomms6929

Xiao, J., Li, C., & Huang, Q. (2015). Kafirin Nanoparticle-Stabilized Pickering Emulsions as Oral Delivery Vehicles: Physicochemical Stability and in Vitro Digestion Profile. Journal of Agricultural and Food Chemistry, 63 (47), 10263–10270. https://doi.org/10.1021/acs.jafc.5b04385

Yang, Y., Fang, Z., Chen, X., Zhang, W., Xie, Y., Chen, Y., Liu, Z., & Yuan, W. (2017). An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Frontiers in Pharmacology. 8. https://doi.org/10.3389/fphar.2017.00287

Zhao, Y., Dan, N., Pan, Y., Nitin, N., & Tikekar, R. V. (2013). Enhancing the barrier properties of colloidosomes using silica nanoparticle aggregates. Journal of Food Engineering, 118 (4), 421–425. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2013.04.030

Zhao, Y., Pan, Y., Nitin, N., & Tikekar, R. V. (2014). Enhanced stability of curcumin in colloidosomes stabilized by silica aggregates. LWT - Food Science and Technology, 58 (2), 667-671. https://doi.org/10.1016/j.lwt.2014.03.017

Zheng, W., Ren, L., Hao, W., Wang, L., Liu, C., & Zheng, L. (2022). Encapsulation of indole-3-carbinol in Pickering emulsions stabilized by OSA-modified high amylose corn starch: Preparation, characterization and storage stability properties. Food Chemistry, 386, 132846. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.132846

Zhou, S., Han, L., Lu, K., Qi, B., Du, X., Liu, G., Tang, Y., Zhang, S., & Li, Y. (2022). Whey protein isolate–phytosterols nanoparticles: Preparation, characterization, and stabilized food-grade pickering emulsions. Food Chemistry, 384, 132486. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.132486

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Download data is not yet available.