Integración de la impresión 3D en el proceso de cera perdida para la producción de joyas, con fines de estandarización

Palabras clave: cera perdida, resinas poliméricas, impresión 3D, estandarización, tiempo de quemado, calidad

Resumen

Las resinas poliméricas son las más utilizadas en la impresión 3D. Estas experimentan diferentes comportamientos y no pueden ser empleadas bajo las mismas condiciones de proceso que cuando se utiliza cera en el proceso de cera perdida. Con este estudio se buscó definir las condiciones estandarizadas para obtener piezas finales de joyería con acabados de calidad, a partir de un proceso de cera perdida combinado con la tecnología de impresión 3D para la elaboración de prototipos. La selección y comprensión de diversas variables y parámetros de proceso es uno de los principales desafíos para la optimización. Diferentes autores consideran que la etapa de quemado es la más crítica y crucial. Por ello, se proponen cuatro curvas de quemado con el fin de evaluar el comportamiento de dos resinas (B9-Emerald y Tepic 2000) e intentar disminuir el tiempo de quemado, sin afectar la calidad de la pieza. Se obtuvieron piezas de mejor calidad al aplicar una curva con tres rampas de temperatura: 150, 455 y 750 °C, mantenidas durante 40, 30 y 20 min, respectivamente, con un tiempo total de 4,5 h.

Biografía del autor/a

Leidy Y Vega, Servicio Nacional de Aprendizaje SENA
Soy ingeniera Quimica de la Universidad Nacional de Colombia (Sede Medellín). He sido participe de diferentes proyectos de investigación, cuyo área de actuación involucra procesos termoquímicos, especialmente torrefacción. Como resultado, he sido autora de articulos cientificos y de libros de investigación.
Laura M Mesa, Servicio Nacional de Aprendizaje SENA
Grupo de Investigación INAMOD. Centro de Formación en Diseño, Confección y Moda, Servicio Nacional de Aprendizaje, Itagüí- Colombia.

Referencias

Actis Grande, M.; Forno, I.; Klotz, U.; Tiberto, D. (2011). Quality Excellence in the Direct Casting of RP Resins: Reality or Fiction ? In The Santa Fe Symposium on Jewelry Manufacturing Technology. Politecnico di Torino & Research Institute for Precious Metals and Metals Chemistry (FEM).

ASTM International. (2012). Standard Terminology for Additive Manufacturing Technologies, (Withdrawn 2015) (ASTM F2792-12a).

ATKearney. (2014). 3D Printing: A Manufacturing Revolution, 1–16. Recuperado de: https://www.atkearney.com/documents/10192/5992684/3D+Printing+A+Manufacturing+Revolution.pdf/bf8f5c00-69c4-4909-858a-423e3b94bba3

Balletti, C.; Ballarin, M.; Guerra, F. (2017). 3D printing: State of the art and future perspectives. Journal of Cultural Heritage, 26, 172–182. https://doi.org/10.1016/j.culher.2017.02.010

Beeley, P.; Smart, R. (1995). Investment casting. London: Institute of Materials. Berman, B. (2012). 3-D printing: The new industrial revolution. Business Horizons, 55(2), 155–162. https://doi.org/10.1016/j.bushor.2011.11.003

Bhandari, S.; Regina, B. (2014). 3D Printing and Its Applications. International Journal of Computer Science and Information Technology Research, 2(2), 378–380.

Campos, J. C.; Romeiro, E. (2013). Implementation of Rapid Manufacturing Systems in the Jewellery Industry in Brazil. In Information Resources Management Association (Ed.), Industrial Engineering: Concepts, Methodologies, Tools, and Applications: Concepts, Methodologies, Tools, and Applications (817–837). USA: Engineering Science Reference. https://doi.org/10.4018/978-1-4666-1945-6.ch046

Cheah, C. M.; Chua, C. K.; Lee, C. W.; Feng, C.; Totong, K. (2005). Rapid prototyping and tooling techniques: A review of applications for rapid investment casting. International Journal of Advanced Manufacturing Technology, 25(3–4), 308–320. https://doi.org/10.1007/s00170-003-1840-6

Chua, C. K.; Leong, K. F.; Lim, C. S. (2010). Rapid Prototyping: Principles and Applications. World Scientific Publishing Co. Pte. Ltda.

Corti, C. (2010). Jewelry Manufacturing Technology. In C. Corti & R. Holliday (Eds.), Gold: Science and applications (pp. 191–212). Taylor & Francis Group.

Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C. B.; Zavattieri, P. D. (2015). The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 69, 65–89. https://doi.org/10.1016/j.cad.2015.04.001

Gebhardt, A. (2012). Understanding Additive Manufacturing Rapid Prototyping - Rapid Tooling - Rapid Manufacturing. Carl Hanser, München, 591. https://doi.org/10.3139/9783446431621

Gibson, I.; Rosen, D.; Stucker, B. (2015). Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Second Edition, New York: Springer. https://doi.org/10.1007/978-1-4939-2113-3

Guo, N.; Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243. https://doi.org/10.1007/s11465-013-0248-8

Hoffman, A. (2016). Better Diamond Iniciative: Different Processes in Jewelry Manufacturing. Recuperado de: https://betterdiamondinitiative.org/different-processes-manufacturing-jewelry/

Holmström, J.; Partanen, J.; Tuomi, J.; Walter, M. (2010). Rapid manufacturing in the spare parts supply chain: Alternative approaches to capacity deployment. Journal of Manufacturing Technology Management, 21(6), 687–697. https://doi.org/10.1108/17410381011063996

Huang, S. H.; Liu, P.; Mokasdar, A.; Hou, L. (2013). Additive manufacturing and its societal impact: A literature review. International Journal of Advanced Manufacturing Technology, 67(5–8), 1191–1203. https://doi.org/10.1007/s00170-012-4558-5

Marwah, O. M. F.; Sharif, S.; Zainol, M. A.; Ibrahim, M.; Mohamad, E. J. (2013). 3D Printer Patterns Evaluation for Direct Investment Casting. Applied Mechanics and Materials, 465–466(December 2013), 1400–1403. https://doi.org/10.4028/www.scientific.net/AMM.465-466.1400

Mellor, S.; Hao, L.; Zhang, D. (2014). Additive manufacturing: A framework for implementation. International Journal of Production Economics, 149, 194–201. https://doi.org/10.1016/j.ijpe.2013.07.008

Mohd Nor, S. Z.; Ismail, R.; Ahmad, S.; Isa, M. I. N. (2015). The effect of dewaxing and burnout temperature in block mold process for copper alloy casting. International Journal of Engineering and Technology, 7(5), 1905–1915.

Muñoz-Mesa, L.; Sánchez, J. (2016). El impacto de la impresión 3D en la joyería. Lampsakos, 16, 89–97. https://doi.org/10.21501/21454086.2219

Pattnaik, S.; Karunakar, D. B.; Jha, P. K. (2012). Developments in investment casting process - A review. Journal of Materials Processing Technology, 212(11), 2332–2348. https://doi.org/10.1016/j.jmatprotec.2012.06.003

Petrick, I. J.; Simpson, T. W. (2013). 3D Printing Disrupts Manufacturing. Research Technology Management, 56(6), 12-16. https://doi.org/10.5437/08956308X5606193

Petrovic, V.; Haro, J. V.; Jordá, O.; Delgado, J.; Blasco, J. R.; Portolés, L. (2009). Additive Layer Manufacturing: State of the art in industrial applications trrough case studies. International Journal of Production Reserach, 25.

Prasad, R. (2012). Progress in Investment Castings. In Science and Technology of Casting Process (pp. 25–72). IntechOpen. https://doi.org/10.5772/50550

Ramya, A.; Vanapalli, S. I. (2016). 3D Printing Technologies in Various Applications. International Journal of Mechanical Engineering and Technology, 7(3), 396–409.

Rayna, T.; Striukova, L. (2016). From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technological Forecasting and Social Change, 102, 214–224. https://doi.org/10.1016/j.techfore.2015.07.023

Redwood, B. (s.f. a). 3D HUBS: Jewelry 3D Printing Applications. Recuperado de: https://www.3dhubs.com/knowledge-base/jewelry-3d-printing-applications

Redwood, B. (s.f. b). 3D HUBS: The Additive Manufacturing Process. Recuperado de: https://www.3dhubs.com/knowledge-base/additive-manufacturing-process

Redwood, B. (s.f. c). 3D HUBS: The Advantages of 3D Printing. Recuperado de: https://www.3dhubs.com/knowledge-base/advantages-3d-printing

Schniederjans, D. G. (2017). Adoption of 3D-printing technologies in manufacturing: A survey analysis. International Journal of Production Economics, 183(Part A), 287–298. https://doi.org/10.1016/j.ijpe.2016.11.008

Sias, F. R. (2005). Lost-wax Casting: Old, New, and Inexpensive Methods. Pendleton, South Carolina: Woodsmere Press. Recuperado de: https://books.google.com.co/books?id=e_09Enaf4tIC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Singh, R., Singh, S.; Hashmi, M. S. J. (2016). Investment Casting. In Reference Module in Materials Science and Materials Engineering (pp. 1–18). https://doi.org/10.1016/B978-0-12-803581-8.04163-1

Singh, S.; Singh, R. (2016). Precision investment casting: A state of art review and future trends. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(12), 2143–2164. https://doi.org/10.1177/0954405415597844

Stansbury, J. W.; Idacavage, M. J. (2016). 3D printing with polymers: Challenges among expanding options and opportunities. Dental Materials, 32(1), 54–64. https://doi.org/10.1016/j.dental.2015.09.018

Underhill, R. (2017). Jewerly Designs: Wax Carving. Recuperado de: https://jewelrydesigns.com/jewelry/jewelry-making/wax-carving/

Vanderploeg, A.; Lee, S.-E.; Mamp, M. (2017). The application of 3D printing technology in the fashion industry. International Journal of Fashion Design, Technology and Education, 10(2), 170–179. https://doi.org/10.1080/17543266.2016.1223355

Yap, Y. L.; Yeong, W. Y. (2014). Additive manufacture of fashion and jewellery products: a mini review: This paper provides an insight into the future of 3D printing industries for fashion and jewellery products. Virtual and Physical Prototyping, 9(3), 195–201. https://doi.org/10.1080/17452759.2014.938993

Publicado
2019-04-12
Cómo citar
Vega, L. Y., & Mesa, L. M. (2019). Integración de la impresión 3D en el proceso de cera perdida para la producción de joyas, con fines de estandarización. Informador Técnico, 83(1), 51-65. https://doi.org/10.23850/22565035.1933
Sección
Artículo de Investigación