Inoculación de nanopartículas de TiO2-Ag en semillas de espinaca
PDF
XML
PDF (English)
XML (English)

Palabras clave

spinach
nanoparticles
photoacoustic
titanium dioxide
silver
Inoculation of seeds espinaca
nanopartículas
fotoacústica
dióxido de titanio
plata
actividad fotosintética
inoculación de semillas

Cómo citar

Gordillo-Delgado, F., Zuluaga-Acosta, J., & Marín-Gallego, B.-J. (2019). Inoculación de nanopartículas de TiO2-Ag en semillas de espinaca. Informador Técnico, 83(1), 76–85. https://doi.org/10.23850/22565035.1659

Resumen

La espinaca es consumida por su valioso aporte nutricional. Sin embargo, en Colombia su baja producción en cultivos, ha sido de poco interés en el área de la investigación. Por otro lado, la nanotecnología que puede ser utilizada en la agricultura para evitar o controlar enfermedades en los cultivos a través de la aplicación de nanopartículas (NPs) se perfila como un tema de alto potencial en nuestro país. En este trabajo, se evaluó la inoculación de suspensiones de NPs de dióxido de titanio con incorporación de plata (TiO2-Ag) en semillas de espinaca. Las NPs se sintetizaron a través del método sol-gel y se caracterizaron por medio de Difracción De Rayos X (DFR). Se obtuvieron muestras en polvo con tamaños de partícula entre 7 y 26 nm que se suspendieron en agua a diferentes concentraciones para la inoculación. En comparación con el grupo control (sin inoculación), se obtuvo un crecimiento de las plantas con NPs del tamaño más bajo y concentración del 2 %, debido a que posiblemente el TiO2-Ag incorporado contribuye al proceso de fotosíntesis y desempeña un papel antimicrobiano. La actividad fotosintética de las plantas tratadas, se midió mediante la técnica fotoacústica y del análisis de los resultados se obtuvo que con el tratamiento hecho con la suspensión de NPs de menor tamaño, a concentración entre 0,25 y 2 %, la Razón de Evolución de Oxígeno (REO) es similar a la que se observó en las plantas del grupo control. Esto indica que el tratamiento con NPs de TiO2-Ag entre 7 y 8 nm puede inducir el crecimiento sin alterar drásticamente la tasa fotosintética de plantas de espinaca a bajas concentraciones, lo que puede ser una alternativa eficiente para la mejora de la producción de este cultivo.

 

https://doi.org/10.23850/22565035.1659
PDF
XML
PDF (English)
XML (English)

Citas

Bradfield, S. (2015). Influence of TiO2 engineered nanoparticles on photosynthetic efficiency and contaminant uptake (Tesis doctoral). Southern Illinois University Carbondale, Illinois.

Capaldi, S.; Diniz, A.; Moretto, R.; Antunes, R.; Zezzi, M. (2015). Nanoparticles applied to plant science. A review. Talanta. 131, 693-705. https://doi.org/10.1016/j.talanta.2014.08.050

Centers for Disease Control and Prevention. (2007). Multistate outbreaks of Salmonella infections associated with raw tomatoes eaten in restaurants. United States, 2005-2006. MMWR. Morbidity and mortality weekly report, 56(35), 909-911.

Departamento Administrativo Nacional de Estadística (2015). Boletín técnico. Encuesta Nacional Agropecuaria. (ENA 2015). Recuperado de: https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2015/boletin_ena_2015.pdf

Fang, J.; Shan, X.; Wen, B.; Lin, J.; Owens, G. (2009). Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environmental pollution, 157(4), 1101-1109. https://doi.org/10.1016/j.envpol.2008.11.006

Food and Agriculture Organization of the United Nations (2018). World Food and Agriculture, Statistical Pocketbook. Rome, 254pp.

Food and Agriculture Organization of the United Nations y Organización Mundial de la Salud (2011). Reunión conjunto de FAO/OMS de Expertos acerca de la aplicación de la nanotecnología en los sectores alimentario y agropecuario: posibles consecuencias para la inocuidad de los alimentos. (Informe de la reunión 2011). Recuperado de: http://www.fao.org/3/i1434s/i1434s00.pdf

Fersini, A. (1976). Horticultura práctica. Edit. Diana (2ª ed.). México

Figueroa, G.; Navarrete, P.; Caro, M.; Troncoso, H.; Faúndez, G. (2002). Portacion de Staphylococcus aereus enterotoxigénicos en manipulación de alimentos. Revista médica de Chile, 130(8), 859-864. https://doi.org/10.4067/S0034-98872002000800003

Ghosh, M.; Bandyopadhyay, M.; Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere, 81(10), 1253-1262. https://doi.org/10.1016/j.chemosphere.2010.09.022

Gutarowska, B.; Skora, J.; Zduniak, K.; Rembisz, D. (2012). Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. International Biodeterioration & Biodegradation, 68, 7-17. https://doi.org/10.1016/j.ibiod.2011.12.002

Hench, L. L.; West, J. K. (1990). The sol-gel process. Chemical reviews, 90(1), 33-72. https://doi.org/10.1021/cr00099a003

Hernández, C. (2010). Estudio de la actividad catalítica del dióxido de titanio soportado en alúmina en la síntesis de ozono a partir de oxígeno por el método de descarga silenciosa. (Tesis de maestría). Universidad Nacional De Colombia, Bogotá, Colombia.

Hong, F.; Zhou, J.; Liu, C.; Yang, F.; Wu, C.; Zheng, L.; Yang, P. (2005). Effect of Nono-TiO2 on photochemical reaction of chloroplasts of spinach. Biological trace element research, 105(1-3), 269-279. https://doi.org/10.1385/BTER:105:1-3:269

Kazuya, N.; Tsuyoshi, O.; Taketoshi, M.; Akira, F. (2012). Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications. Electrochimica Acta, 84, 103-111. https://doi.org/10.1016/j.electacta.2012.03.035

Krishnaraj, C.; Ji, B. J.; Harper, S. L.; Yun, S. I. (2016). Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver doped manganese dioxide nanoparticles and their antibacterial activity against food and water borne pathogens. Bioprocess and biosystems engineering, 39(5), 759-772. https://doi.org/10.1007/s00449-016-1556-2

Lin, D.; Ji, J.; Long, Z.; Yang, K.; Wu, F. (2012). The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water research, 46(14), 4477-4487. https://doi.org/10.1016/j.watres.2012.05.035

Liu, K.; Lin, X.; Zhao, J. (2013). Toxic effects of the interaction of titanium dioxide nanoparticles with chemicals or physical factors. International journal of nanomedicine, 8, 2509-2520. Luján, D. (2014). Pseudomonas aeruginosa: un adversario peligroso. Acta Bioquímica Clínica Latinoamericana, 48(4), 465-474.

Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1-2), 3-18. https://doi.org/10.1016/j.cossms.2007.08.004

Macías, L.; García, M.; De La Torre, I.; Chávez, A. (2000). Cuantificación de fases en óxidos de titanio por medio de difracción de rayos X. En Congreso Técnico Científico ININ-SUTIN. Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, México. Recuperado de: https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/013/33013257.pdf?r=1&r=1

Martínez, L. A. (2015). Micromorfología de tallo y raíz de plantas de maíz y frijol tratadas con nano partículas de titanio, hierro y zinc, bajo invernadero (Tesis de grado). Universidad Autónoma Agraria Antonio Narro, Saltillo, México. Recuperado de: h t t p : / / r e p o s i t o r i o . u a a a n . m x : 8 0 8 0 / x m l u i / b i t s t r e a m / h a n d l e / 1 2 3 4 5 6 7 8 9 / 6 8 4 4 /T 2 0 5 2 0 % 2 0 M A R T I N E Z % 2 0 R O D R I G U E Z % 2 c % 2 0 L U I S % 2 0 A L B E R T O % 2 0 % 2 0 6 3 4 3 6 .pdf?sequence=1&isAllowed=y

Morales, J.; Moran, J.; Quintana, M.; Estrada, W. (2009). Síntesis y caracterización de nanopartículas de plata por la ruta Sol-Gel a partir de Nitrato de plata. Revista de la Sociedad Química del Perú, 75(2), 177-184

Mosquera, E.; Rosas, N.; Debut, A.; Guerrero, V.H. (2015). Síntesis y caracterización de nano partículas de dióxido de titanio obtenidas por el método Sol-Gel. Revista Politécnica, 36(3), 7.

National Institute for Occupational Safety and Health (2011). Occupational exposure to titanium dioxide. Current Intelligence. (Bulletin 63, 2011). Recuperado de: https://www.cdc.gov/niosh/docs/2011-160/pdfs/2011-160.pdf

Nowack, B. (2009). The behaviour and effects of nanoparticles in the environment. Environmental pollution, 157(4), 1063-1185. https://doi.org/10.1016/j.envpol.2008.12.019

Ocaña de Jesús, R.; Gutiérrez, I.; Sánchez, P.; Barsain, M.; Campos, C.; Laguna, A. (2017). Persistencia, internalización y translocación de Escherichia coli O157:H7, O157:H16 y O105ab en plantas y frutos de tomate (Solanum lycopersium L). Revista Argentina de Microbiología, 50(4), 408-416. https://doi.org/10.1016/j.ram.2017.12.001

Olejnik, M.; Krajnik, B.; Kowalska, D.; Twardowska, M.; Czechowski, N.; Hofmann, E.; Mackowski, S. (2013). Imaging of fluorescence enhancement in photosynthetic complexes coupled to silver nanowires. Applied Physics Letters, 102(8), 083703. https://doi.org/10.1063/1.4794171

Ollis, D.F.; Ekabi, H. (1993). Photocatalytic purification and treatment of water and air. Elsevier: Amsterdan.

Osborne, O.J.; Johnston, B. D.; Moger, J.; Balousha, M.; Lead, J. R.; Kudoh, T.; Tyler, C. R. (2013). Effects of particle size and coating on nanoscale Ag and TiO2 exposure in zebrafish (Danio rerio) embryos. Nanotoxicology, 7(8), 1315-1324. https://doi.org/10.3109/17435390.2012.737484

Quiroz, H. (2014). Preparación y estudio de las propíedades estructurales, ópticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos (Tesis de maestría). Universidad Nacional de Colombia. Bogotá, Colombia. 23-36 pp

Rai, M.; Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94(2), 287-293. https://doi.org/10.1007/s00253-012-3969-4

Rico, C. M.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. (2015). Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In Siddiqui M., Al-Whaibi M., Mohammad F. (Eds.) Nanotechnology and Plant Sciences (pp. 1-17). Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0_1

Sánchez, J. (2017). Mercado de productos agrícolas ecológicos en Colombia. Suma de negocios, 8(18), 156-163. https://doi.org/10.1016/j.sumneg.2017.10.001

Shah, V.; Belozerova, I. (2009). Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water, Air, and Soil Pollution, 197(1-4), 143-148. https://doi.org/10.1007/s11270-008-9797-6

Somasundaran, P.; Fang, X.; Ponnurangam, S.; Li, B. (2010). Nanoparticles: characteristics, mechanisms and modulation of biotoxicity. KONA powder and particle journal, 28, 38-49. https://doi.org/10.14356/kona.2010007

Stockmann, C.; Sherwin, C. M.; Ampofo, K.; Spigarelli, M. G. (2014). Development of levofloxacin inhalation solution to treat Pseudomonas aeruginosa in patients with cystic fibrosis. Therapeutic advances in respiratory disease, 8(1), 13-21. https://doi.org/10.1177/1753465813508445

Villar, M.; Bonilla, M. A. (2015). Obtención y caracterización de nanopartículas de LiMn2O4, LiMn1.5Fe0.5O4 y LiMn1.25Fe0.75 O4 (Tesis de maestría). Universidad Tecnológica de Puebla. Puebla, México.

Vladimir, M. (9 de mayo de 2011). Titanium Dioxide: A Changing Paradigm in Occupational Risk Management. (Blog). Recuperado de: http://blogs.cdc.gov/niosh-science-blog/2011/05/09/TiO2

Watt, B. K. (1975). Composition of Foods. Agriculural hanbook. Washington DC, U. S. Dep of Agric.

Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; Von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental science & technology, 46(4), 2242-2250. https://doi.org/10.1021/es204168d

Wiesner, M. R.; Lowry, G. V.; Dionysiou, P.; Biswas, P. (2006). Assessing the risk of manufactured nanomaterials. Environmental Science & Technology, 40(14),4336-45. https://doi.org/10.1021/es062726m

Yang, F.; Liu, C.; Gao, F.; Su, M.; Wu, X.; Zheng, L.; Hong, F.; Yang, P. (2007). The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biological trace element research, 119(1), 77-88. https://doi.org/10.1007/s12011-007-0046-4

Ze, Y.; Liu, C.; Wang, L.; Hong, M.; Hong, F. (2010). The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of arabidopsis thaliana. Biological trace element research, 143(2), 1131-1141. https://doi.org/10.1007/s12011-010-8901-0

Zhang, X.; Niu, H.; Yan, J.; Cai, Y. (2011). Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375(1-3), 186-192. https://doi.org/10.1016/j.colsurfa.2010.12.009

Zheng, L.; Mingyu, S.; Xiao, W.; Chao, L.; Chunxiang, Q.; Liang, C.; Hao, H.; Xiaoqing, L.; Fashui, H. (2008). Antioxidant Stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biological Trace Element Research, 121(1), 69-79. https://doi.org/10.1007/s12011-007-8028-0

Descargas

Los datos de descargas todavía no están disponibles.