Resumen
En los últimos años, el uso del concreto autocompactante (CAC) ha ido aumentando desde su inicio, debido a la capacidad que tiene para llenar encofrados con alta densidad de aceros, por lo que el empleo de este tipo de concreto en la elaboración de muros delgados armados sería una solución al llenado incompleto de este tipo de elementos prefabricados. Por otra parte, el empleo de residuo de mampostería (RM) y agregado grueso reciclado de concreto (AGR) proveniente de residuos de construcción y demolición (RCD) como reemplazo del cemento (20 % en volumen) y del agregado grueso, respectivamente, daría un enfoque sostenible al concreto autocompactante. El objetivo de este estudio fue evaluar la influencia de los RCD en las propiedades en estado fresco (flujo de asentamiento, embudo en V y caja en L) y estado endurecido (resistencia a la compresión, tracción indirecta y compresión diagonal de muretes) de concretos autocompactantes. Las mezclas de CAC propuestas muestran que cuando se sustituye el cemento Portland y el agregado natural por RM y AGR, respectivamente, los concretos pueden satisfacer los requerimientos de las directrices europeas de European Federation of National Associations Representing producers and applicators of specialist building products for Concrete (EFNARC por sus siglas en inglés). En estado endurecido, los CAC con RCD lograron un desempeño aceptable en comparación con la mezcla de referencia (CAC-referencia). Todas las mezclas lograron una resistencia a la compresión superior a los 21 MPa (28 días), adecuada para muros divisorios de casas, de acuerdo al Reglamento Colombiano de Construcción Sismo Resistente (NSR 10).
Citas
Ajdukiewicz, A.; Kliszczewicz, A. (2002). Influence of recycled aggregates on mechanical properties of HS/HPC. Cement and Concrete Composites. 24(2), 269–279. https://doi.org/10.1016/S0958-9465(01)00012-9
Amer A.A.M.; Ezziane, K.; Bougara, A.; Adjoudj, M. (2016). Rheological and mechanical behavior of concrete made with pre-saturated and dried recycled concrete aggregates. Construction and Building Materials. 123, 300–308. https://doi.org/10.1016/j.conbuildmat.2016.06.107.
Andal, J.; Shehata, M.; Zacarias, P. (2016). Properties of concrete containing recycled concrete aggregate of preserved quality. Construction and Building Materials. 125, 842–855. https://doi.org/10.1016/j.conbuildmat.2016.08.110.
Asutkar, P.; Shinde, S.B.; Patel, R. (2017). Study on the behavior of rubber aggregates concrete beams using analytical approach. Engineering Science and Technology, an International Journal. 20(1), 151-159. https://doi.org/10.1016/j.jestch.2016.07.007
Behera, M.; Bhattacharyya, S.K.; Minocha, A.K.; Deoliya, R.; Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete – A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials. 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003
Boudali, S.; Kerdal, D.E.; Ayed, K.; Abdulsalam, B.; Soliman, A.M. (2016). Performance of self-compacting concrete incorporating recycled concrete fines and aggregate exposed to sulphate attack. Construction and Building Materials. 124, 705–713. https://doi.org/10.1016/j.conbuildmat.2016.06.058
Butler, L.; West, J.; Tighe, S. (2012). Effect of recycled concrete aggregate properties on mixture proportions of structural concrete. Transportation Research Record: Journal of the Transportation Research Board. 2290, 105–114. https://doi.org/10.3141/2290-14
EFNARC (2002). Especificaciones y directrices para el Hormigón autocompactable – HAC. Disponible en: http://www.efnarc.org/pdf/SandGforSCCSpanish.pdf
EPG (2005). European Project Group (BIBM; CEMBUREAU; EFCA; EFNARC). Disponible en: https://www.theconcreteinitiative.eu/images/ECP_Documents/EuropeanGuidelinesSelfCompactingConcrete.pdf
Golondrino, J.C.; Bonilla, D.F.; Gaviria, J.A.; Giraldo, J.J. (2008). Ensayos a compresión y tensión diagonal sobre muretes hechos a base de papel periódico reciclado y engrudo de almidón de yuca. Revista Ingeniería de Construcción. 23(3), 145-154. http://dx.doi.org/10.4067/S0718-50732008000300002
Han, F.; Song, S.; Liu, J.; Huang, S. (2019). Properties of steam-cured precast concrete containing iron tailing powder. Powder Technology. 345, 292–299. https://doi.org/10.1016/j.powtec.2019.01.007
Khayat K.H.; Hu C.; Monty H. (1999) Stability of Self consolidating concrete, advantages and Potential applications. In: RILEM international conference on self-compacting concrete. Rilem Publications SARL. p.p, 143–52. Disponible en: https://books.google.com.co/books?hl=es&lr=&id=D4Vn96zmWuwC&oi=fnd&pg=PA143&dq=stability+of+self+compacting+concrete,+advantages,+and+potential+applications&ots=dsQYwHgAo_&sig=6Jpqmtxt1QtEx6B9eV2tyhinhU8#v=onepage&q=stability%20of%20self%20compacting%20concrete%2C%20advantages%2C%20and%20potential%20applications&f=false
Khoshkenari, A.G.; Shafigh, P.; Moghimi, M.; Mahmud, H.B. (2014). The role of 0-2 mm fine recycled concrete aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate concrete. Materials and Desing. 64: 345-354.
Kou S.C.; Poon C.S.; Wan H.W. (2012). Properties of concrete prepared with low-grade recycled aggregates. Construction and Building Materials. 36, 881-889. https://doi.org/10.1016/j.conbuildmat.2012.06.060
Malhotra V.M., Mehta P.K. (1996). Pozzolanic and Cementitious Materials. Ottawa, Canada. Gordon and Breach Publishers.
Manzi, S.; Mazzotti, C.; Bignozzi, M.C. (2017). Self-compacting concrete with recycled concrete aggregate: Study of the long-term properties. Construction and Building Materials 157, 582–590. https://doi.org/10.1016/j.conbuildmat.2017.09.129.
McNeil, K.; Kang, T.H-K. (2013). Recycled concrete aggregates: a review. International Journal of Concrete Structures and Materials. 7(1),61–69. https://doi.org/10.1007/s40069-013-0032-5.
Naceri A.; Hamina M.C. (2009). Use of waste brick as a partial replacement of cement in mortar. Waste Management 29, 2378–2384. https://doi.org/10.1016/j.wasman.2009.03.026.
Oikonomou, N.D. (2005). Recycled concrete aggregates. Cement and Concrete Composites. 27 (2), 315-318. https://doi.org/10.1016/j.cemconcomp.2004.02.020
Özal F.; Yilmaz H.D.; Kara M., Kaya O.; Sahin A. (2016). Effects of recycled aggregates from construction and demolition wastes on mechanical and permeability properties of paving Stone, kerb and concrete pipes. Construction and Building Materials. 110, 17-23. https://doi.org/10.1016/j.conbuildmat.2016.01.030
Poon C.S., Chan D. (2007). The use of recycled aggregate in concrete in Hong Kong. Resources, Conservation and Recycling. 50(3), 293-305. https://doi.org/10.1016/j.resconrec.2006.06.005.
Santos, S.; da Silva, P.R.; de Brito, J. (2019). Self-compacting concrete with recycled aggregates – A literature review. Journal of Building Engineering, 22, 349–371. https://doi.org/10.1016/j.jobe.2019.01.001
Schackow A.; Stringari, D.; Senff, L.; Correia, S.L.; Segadães A.M. (2015). Influence of fired clay brick waste additions on the durability of mortars. Cement & Concrete Composites. 62: 82–89. https://doi.org/10.1016/j.cemconcomp.2015.04.019
Silva R.V., De Brito J., Dhir R.K. (2015). Tensile Strength Behaviour of recycled aggregate concrete. Construction and Building Materials. 83: 108-118.
Silva, Y.F.; Robayo, R.A.; Mattey, P.E.; Delvasto, S. (2015). Obtención de concretos autocompactantes empleando residuos de demolición. Revista Latinoamericana de Metalurgia y Materiales. 35(1), 86-94. Disponible en: https://www.rlmm.org/ojs/index.php/rlmm/article/view/549
Silva, Y.F.; Robayo, R.A.; Mattey, P.E.; Delvasto, S. (2016). Properties of self-compacting concrete on fresh and hardened with residue of masonry and recycled concrete. Construction and Building Materials. 124, 639-644. https://doi.org/10.1016/j.conbuildmat.2016.07.057
Wang, Q.; Kim, M-K.; Cheng, J.C.P.; Sonh H. (2016). Automated quality assessment of precast concrete elements with geometry irregularities using terrestrial laser scanning. Automation in Construction. 68, 170-182. https://doi.org/10.1016/j.autcon.2016.03.014
Xiao, J.; Ma, Z.; Ding, T. (2016). Reclamation chain of waste concrete: A case study of Shanghai. Waste Management. 48, 334-343. https://doi.org/10.1016/j.wasman.2015.09.018
Zain, M.F.M.; Mahmud, H.B.; Iham, A.; Faizal, M. (2002). Prediction of splitting tensile strength of high-performance concrete. Cement and Concrete Research. 32(8): 1251-1258. https://doi.org/10.1016/S0008-8846(02)00768-8
Zhu, P.; Mao, X.; Qu, W.; Li, Z.; John Ma, Z. (2016). Investigation of using recycled powder from waste of clay bricks and cement solids in reactive powder concrete. Construction and Building Materials. 246-254. https://doi.org/10.1016/j.conbuildmat.2016.03.040