Modificación superficial de micro fibras de celulosa obtenidas a partir de bagazo de caña de azúcar usando silanización
PDF
PDF (English)
XML
XML English

Palabras clave

Sugarcane bagasse
silanes
silanization
TGA
FTIR
hydrophic
natural fibers. Bagazo de caña
silanos
silanización
TGA
FTIR
hidrofobicidad
fibras naturales.

Cómo citar

Luna Vera, F., Melo Cortes, H. A., Murcia, C. V., & Charry Galvis, I. (2014). Modificación superficial de micro fibras de celulosa obtenidas a partir de bagazo de caña de azúcar usando silanización. Informador Técnico, 78(2), 106–114. https://doi.org/10.23850/22565035.93

Resumen

 

 

Se produjeron microfibras de bagazo de caña de azúcar que exhiben repelencia al agua tras su pretratamiento y modificación superficial con hexadeciltrimetoxisilano. Fueron estudiados tres pretratamientos para llevar a cabo deslignificación, remoción de hemicelulosa y exposición superficial de celulosa: tratamiento con hipoclorito 3% (HP), mezcla clorito de sodio y ácido acético (CAc) y una solución oxidante de hipoclorito-peróxido de hidrógeno seguida de tratamiento alkalino (OX-B). Lignina y hemicelulosa fueron efectivamente removidas de las fibras de bagazo con el tratamiento OX-B, el cual produjo fibras desagregadas de 567 ± 115 μm de largo y relación de aspecto de 32. Otros tratamientos como el HP producen menor cantidad de fibras, con menor longitud, 296 ± 32. La efectividad del tratamiento seleccionado, OX-B, permitió obtener un material lignocelulósico a partir de bagazo de caña de azúcar, fácilmente modificable e impermeable al agua cuyas características suponen su efectividad como elemento de reforzamiento en materiales compuestos de matriz polimérica.

 

https://doi.org/10.23850/22565035.93
PDF
PDF (English)
XML
XML English

Citas

Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries!. Bioresour. Technol. 99: 4661-4667.

https://doi.org/10.1016/j.biortech.2007.09.043

Benini, K.C.C.C., Woorwald, H.J.C., Cioffi, M.O.H. (2011). Mechanical properties of HIPS/surgacane bagasse fiber composites after accelerated weathering, Procedia Eng, 10: 3246-3251.

https://doi.org/10.1016/j.proeng.2011.04.536

Bigg, D.M. (1985). Effect of compounding on the properties of short fiber reinforced injection moldable thermoplastic composites", Polym. Compos., 6 (1): 20-28. Brugnago, R.J., Satyanarayana, K.G., Wypych,F., Ramos, L.P. (2011). The effect of steam explosion on the production of sugarcane gasse/polyester composites", Composites Part A, 42: 364-370.

Chen HL, Porter RS. (1994). Composite of polyethylene and kenaf, a natural cellulose fiber. J Appl Polym Sci, 54:1781–1783.

https://doi.org/10.1002/app.1994.070541121

Corrandini, E., Ito, E.N., Marconcini, J.M., Rios, C.T., Agnelli, J.A.M, Mattoso, Luis H.C. (2009). Interfacial behavior of composites of recycled poly(ethylene terephthalate) and sugarcane bagasse fiber. Polym. Test., 28:183-187.

https://doi.org/10.1016/j.polymertesting.2008.11.014

Coutinho FMB, Costa THS, Carvalho DL. (1997). Polypropylene–wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J Appl Polym Sci 65:1227–35.

https://doi.org/10.1002/(SICI)1097-4628(19970808)65:6<1227::AID-APP18>3.0.CO;2-Q

Gao, H., Xie, Y., Ou, R. Wang, Q. (2012).Grafting effects of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood–plastic composites", Composites part A. 43: 150–157.

https://doi.org/10.1016/j.compositesa.2011.10.001

Gassan J, Bledzki AK. (1997). The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Composites Part A, 28: 1001–1005.

https://doi.org/10.1016/S1359-835X(97)00042-0

Huang, Z., Wang, N., Zhang,Y., Hu, H., Luo, Y.(2012). Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites, Composites Part A, 43: 114-120.

https://doi.org/10.1016/j.compositesa.2011.09.025

Joseph K, Thomas S, Pavithran C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37:5139–49.

https://doi.org/10.1016/0032-3861(96)00144-9

Kali, S., Dufresne, A., Cherian, B.M., Avérous, L., Njuuna, J., Nassiopoulos, E. .Cellulose-Base Bio and Nanocomposites: A Review. Int. J. Polym. Sci., 837875:.1-35.

Karmarkar, A., Chauchan, S.S., Modak, J.M., Manas, C. (2007). Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group Composites Part A, 38:227–233.

https://doi.org/10.1016/j.compositesa.2006.05.005

Kazayawoko M., Balatinecz J.J., Matuana LM. (1999). Surface modification and adhesion mechanisms in woodfiber-polypropylene composites. J Mater Sci. 34: 6189–99.

https://doi.org/10.1023/A:1004790409158

Khalil HPSA, Rozman HD, Ahmad MN, Ismail H. (2000). Acetylated plant-fiber reinforced polyester composites: a study of mechanical, hygrothermal, and aging characteristics. Polym Plast Tech Eng, 39:757–81.

https://doi.org/10.1081/PPT-100100057

La Mantia FP, Morreale M. (2007). Improving the properties of polypropylene–wood flour composites by utilization of maleated adhesion promoters. Compos. Interf, 14:685–98.

https://doi.org/10.1163/156855407782106500

La Mantia, F.P., Morreale, M. (2011). Green composites: A brief review. Composites part A, 42: 579-588.

https://doi.org/10.1016/j.compositesa.2011.01.017

Leu, S.Y., Yang, T.H., Loc, S.F., Yang, T.H. (2012). Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs), Construct. Build. Mater, 29: 120–127.

https://doi.org/10.1016/j.conbuildmat.2011.09.013

Li X, Tabil LG, Panigrahi S, Crerar WJ. (2009) The influence of fiber content on properties of injection molded flax fiber-HDPE biocomposites. Can Biosyst Eng, 8(148):1–10.

Lovely M, Joseph KU, Rani J. (2004). Isora fibres and their composites with naturalrubber." Prog Rubber Plastics Recycl Technol 20:337–49.

Luz, S.M., Goncalves, A.R., Del ́Arco, Jr., (2007). Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites, Composites Part A., 38:. 14551461.

https://doi.org/10.1016/j.compositesa.2007.01.014

Masuelli, Martin Alberto. (2013). Introduction of Fibre-Reinforced Polymers − Polymers and Composites: Concepts, Properties and Processes, Fiber Reinforced Polymers – The Technology Applied for Concrete Repair, Dr. Martin Masuelli (Ed.), InTech, DOI: 10.5772/54629. Recuperado de http://www.intechopen.com/books/fiber-reinforced-polymers-the-technology-applied-for-concrete-repair/introduction-of-fibre-reinforced-polymers-polymers-and-composites-concepts-properties-and-processes.

https://doi.org/10.5772/54629

Mohanty,A.K., Drzal, L.T.(2002). Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World, J.Polym.Envirom, 10 (1/2): 19-26.

https://doi.org/10.1023/A:1021013921916

Mohanty AK, Drzal LT, Misra M. (2002). Novel hybrid coupling agent as an adhesion promoter in natural fiber reinforced powder polypropylene composites. J.Mater Sci Lett 21:1885–8.

https://doi.org/10.1023/A:1021577632600

Mulinari, D.R., Voorwald, J.C.H., Cioffi, M.O.H., da Silva, M.L.C.P., Luz, S.M. (2009). Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer, 75:317-321.

Sobczak, L., Lang, R.W., Haider, A. (2012). Polypropylene composites with natural fibers and wood – General mechanical property profiles, Compo. Sci. Technol., 72:550–557.

https://doi.org/10.1016/j.compscitech.2011.12.013

Stupenengo, F. (2011) Materiales y materias primas: Materiales compuestos, Cap 10, Ministerio de Educación de la República de Argentina, 2011, Recuperado de http://www.inet.edu.ar/wp-content/uploads/2012/11/materiales-compuestos.pdf

Vilay, V., Mariatti, M., Mat Taib, R., and Todo, M. (2008). Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Composites Science and Technology, 68: 631–638.

https://doi.org/10.1016/j.compscitech.2007.10.005

Xiea, Y, Hillb, C., Xiaoa, Z., Militza, H., Maia, C. (2006). Silane coupling agents used for natural fiber/polymer Composites: A review Composites A, 41: 806-819.

https://doi.org/10.1016/j.compositesa.2010.03.005

Yang, H.P., Yan, R., Chen, H., Lee, D.H., Zheng, C.(2007). Characteritics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86:1781-1788.

https://doi.org/10.1016/j.fuel.2006.12.013

Zhao, X., van der Heide, E., Zhang, T., Liu, D. (2010). Delignification of sugarcane bagasse with alkali and peracetic acid and characterization of the pulp, Bioresources, 5(3): 1565-1580.

Zhao, X., Wang, L., Liu, De-Hua. (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J. Chem. Technol. Biotechnol. 83: 950-956.

https://doi.org/10.1002/jctb.1889

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2019 Servicio Nacional de Aprendizaje (SENA)

Descargas

Los datos de descargas todavía no están disponibles.