Informador Técnico
ISSN: 2256-5035 (Electrónico)
ISSN: 0122-056X (Impreso)
Formato: Electrónico / Acceso Abierto
Frecuencia: Números Semestrales
Revisión por Pares: Doble Ciego
Se produjeron microfibras de bagazo de caña de azúcar que exhiben repelencia al agua tras su pretratamiento y modificación superficial con hexadeciltrimetoxisilano. Fueron estudiados tres pretratamientos para llevar a cabo deslignificación, remoción de hemicelulosa y exposición superficial de celulosa: tratamiento con hipoclorito 3% (HP), mezcla clorito de sodio y ácido acético (CAc) y una solución oxidante de hipoclorito-peróxido de hidrógeno seguida de tratamiento alkalino (OX-B). Lignina y hemicelulosa fueron efectivamente removidas de las fibras de bagazo con el tratamiento OX-B, el cual produjo fibras desagregadas de 567 ± 115 μm de largo y relación de aspecto de 32. Otros tratamientos como el HP producen menor cantidad de fibras, con menor longitud, 296 ± 32. La efectividad del tratamiento seleccionado, OX-B, permitió obtener un material lignocelulósico a partir de bagazo de caña de azúcar, fácilmente modificable e impermeable al agua cuyas características suponen su efectividad como elemento de reforzamiento en materiales compuestos de matriz polimérica.
Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries!. Bioresour. Technol. 99: 4661-4667.
https://doi.org/10.1016/j.biortech.2007.09.043
Benini, K.C.C.C., Woorwald, H.J.C., Cioffi, M.O.H. (2011). Mechanical properties of HIPS/surgacane bagasse fiber composites after accelerated weathering, Procedia Eng, 10: 3246-3251.
https://doi.org/10.1016/j.proeng.2011.04.536
Bigg, D.M. (1985). Effect of compounding on the properties of short fiber reinforced injection moldable thermoplastic composites", Polym. Compos., 6 (1): 20-28. Brugnago, R.J., Satyanarayana, K.G., Wypych,F., Ramos, L.P. (2011). The effect of steam explosion on the production of sugarcane gasse/polyester composites", Composites Part A, 42: 364-370.
Chen HL, Porter RS. (1994). Composite of polyethylene and kenaf, a natural cellulose fiber. J Appl Polym Sci, 54:1781–1783.
https://doi.org/10.1002/app.1994.070541121
Corrandini, E., Ito, E.N., Marconcini, J.M., Rios, C.T., Agnelli, J.A.M, Mattoso, Luis H.C. (2009). Interfacial behavior of composites of recycled poly(ethylene terephthalate) and sugarcane bagasse fiber. Polym. Test., 28:183-187.
https://doi.org/10.1016/j.polymertesting.2008.11.014
Coutinho FMB, Costa THS, Carvalho DL. (1997). Polypropylene–wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J Appl Polym Sci 65:1227–35.
https://doi.org/10.1002/(SICI)1097-4628(19970808)65:6<1227::AID-APP18>3.0.CO;2-Q
Gao, H., Xie, Y., Ou, R. Wang, Q. (2012).Grafting effects of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood–plastic composites", Composites part A. 43: 150–157.
https://doi.org/10.1016/j.compositesa.2011.10.001
Gassan J, Bledzki AK. (1997). The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Composites Part A, 28: 1001–1005.
https://doi.org/10.1016/S1359-835X(97)00042-0
Huang, Z., Wang, N., Zhang,Y., Hu, H., Luo, Y.(2012). Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites, Composites Part A, 43: 114-120.
https://doi.org/10.1016/j.compositesa.2011.09.025
Joseph K, Thomas S, Pavithran C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer, 37:5139–49.
https://doi.org/10.1016/0032-3861(96)00144-9
Kali, S., Dufresne, A., Cherian, B.M., Avérous, L., Njuuna, J., Nassiopoulos, E. .Cellulose-Base Bio and Nanocomposites: A Review. Int. J. Polym. Sci., 837875:.1-35.
Karmarkar, A., Chauchan, S.S., Modak, J.M., Manas, C. (2007). Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group Composites Part A, 38:227–233.
https://doi.org/10.1016/j.compositesa.2006.05.005
Kazayawoko M., Balatinecz J.J., Matuana LM. (1999). Surface modification and adhesion mechanisms in woodfiber-polypropylene composites. J Mater Sci. 34: 6189–99.
https://doi.org/10.1023/A:1004790409158
Khalil HPSA, Rozman HD, Ahmad MN, Ismail H. (2000). Acetylated plant-fiber reinforced polyester composites: a study of mechanical, hygrothermal, and aging characteristics. Polym Plast Tech Eng, 39:757–81.
https://doi.org/10.1081/PPT-100100057
La Mantia FP, Morreale M. (2007). Improving the properties of polypropylene–wood flour composites by utilization of maleated adhesion promoters. Compos. Interf, 14:685–98.
https://doi.org/10.1163/156855407782106500
La Mantia, F.P., Morreale, M. (2011). Green composites: A brief review. Composites part A, 42: 579-588.
https://doi.org/10.1016/j.compositesa.2011.01.017
Leu, S.Y., Yang, T.H., Loc, S.F., Yang, T.H. (2012). Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs), Construct. Build. Mater, 29: 120–127.
https://doi.org/10.1016/j.conbuildmat.2011.09.013
Li X, Tabil LG, Panigrahi S, Crerar WJ. (2009) The influence of fiber content on properties of injection molded flax fiber-HDPE biocomposites. Can Biosyst Eng, 8(148):1–10.
Lovely M, Joseph KU, Rani J. (2004). Isora fibres and their composites with naturalrubber." Prog Rubber Plastics Recycl Technol 20:337–49.
Luz, S.M., Goncalves, A.R., Del ́Arco, Jr., (2007). Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites, Composites Part A., 38:. 14551461.
https://doi.org/10.1016/j.compositesa.2007.01.014
Masuelli, Martin Alberto. (2013). Introduction of Fibre-Reinforced Polymers − Polymers and Composites: Concepts, Properties and Processes, Fiber Reinforced Polymers – The Technology Applied for Concrete Repair, Dr. Martin Masuelli (Ed.), InTech, DOI: 10.5772/54629. Recuperado de http://www.intechopen.com/books/fiber-reinforced-polymers-the-technology-applied-for-concrete-repair/introduction-of-fibre-reinforced-polymers-polymers-and-composites-concepts-properties-and-processes.
Mohanty,A.K., Drzal, L.T.(2002). Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World, J.Polym.Envirom, 10 (1/2): 19-26.
https://doi.org/10.1023/A:1021013921916
Mohanty AK, Drzal LT, Misra M. (2002). Novel hybrid coupling agent as an adhesion promoter in natural fiber reinforced powder polypropylene composites. J.Mater Sci Lett 21:1885–8.
https://doi.org/10.1023/A:1021577632600
Mulinari, D.R., Voorwald, J.C.H., Cioffi, M.O.H., da Silva, M.L.C.P., Luz, S.M. (2009). Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer, 75:317-321.
Sobczak, L., Lang, R.W., Haider, A. (2012). Polypropylene composites with natural fibers and wood – General mechanical property profiles, Compo. Sci. Technol., 72:550–557.
https://doi.org/10.1016/j.compscitech.2011.12.013
Stupenengo, F. (2011) Materiales y materias primas: Materiales compuestos, Cap 10, Ministerio de Educación de la República de Argentina, 2011, Recuperado de http://www.inet.edu.ar/wp-content/uploads/2012/11/materiales-compuestos.pdf
Vilay, V., Mariatti, M., Mat Taib, R., and Todo, M. (2008). Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Composites Science and Technology, 68: 631–638.
https://doi.org/10.1016/j.compscitech.2007.10.005
Xiea, Y, Hillb, C., Xiaoa, Z., Militza, H., Maia, C. (2006). Silane coupling agents used for natural fiber/polymer Composites: A review Composites A, 41: 806-819.
https://doi.org/10.1016/j.compositesa.2010.03.005
Yang, H.P., Yan, R., Chen, H., Lee, D.H., Zheng, C.(2007). Characteritics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86:1781-1788.
https://doi.org/10.1016/j.fuel.2006.12.013
Zhao, X., van der Heide, E., Zhang, T., Liu, D. (2010). Delignification of sugarcane bagasse with alkali and peracetic acid and characterization of the pulp, Bioresources, 5(3): 1565-1580.
Zhao, X., Wang, L., Liu, De-Hua. (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J. Chem. Technol. Biotechnol. 83: 950-956.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2019 Servicio Nacional de Aprendizaje (SENA)