Abstract
The varieties of coffee resistant to pests and diseases as an alternative use to maintain their production, must first adapt to the soil conditions of the cultivated regions, present an adequate production yield (kg/ha) and contain quality chemical markers, which will impact on the aromatic and sensory profile in your drink. The objective of this work was to characterize chemically the hybrid variety of coffee “Millennium” (H10®), introduced in 2015 in Veracruz, Mexico and compare it with the variety “Typica” (VT). The content of lipids, protein, caffeine, sucrose and 5-O-caffeoyl-quinic acid (5-CQA) was studied in green coffee grains, by classical and chromatographic methods (HPLC); and the volatile fraction in green and roasted grains, was studied by the coupling technique of: HS-SPME-GC-MS and by the direct incidence of plasma ray on coffee beans (UPLC-ESI-MS/MS). The dry matter values of caffeine (0.8g/100g) and sucrose (6.6/100g) in green beans were similar in H10® to those in VT. The content of lipids and 5-CQA, of H10®, showed a significant positive difference of +6.1g and +0.1g per 100g respectively and a significantly lower protein content of -2.5g/100g with respect to the VT. Of a total of 24 volatile organic compounds identified by HS-SPME-GC-SM in roasted samples, only 2-methylpropanal, 3-acetyl-1-methylpyrrole and myrcene, were present in the H10® variety with respect to VT. The study by UPLC-ESI-MS/MS, showed in green and roasted beans a total of 87 more intense ions, where in green coffee, the H10® variety was characterized by 19 ions and the VT by an ion. For roasted coffee, 6 bins between 85.97 and 290.87m/z, characterized the volatile fraction of H10®, while 7 bins between 80.02 and 470.21m/z characterized the volatile fraction of the VT.References
Akiyama, M., Murakami, K., Ikeda, M., Iwatsuki, K., Kokubo, S., Wada, A., … Tanaka, K. (2005). Characterization of Flavor Compounds Released During Grinding of Roasted Robusta Coffee Beans. Food Science and Technology Research, 11(3), 298–307. https://doi.org/10.3136/fstr.11.298
Arcila-Pulgarin, J., & Valencia- Aristizábal, G. (1975). Relación entre la actividad de la Polifenol Oxidasa (PFO) y las pruebas de catación como medidas de la calidad de la bebida del café. Cenicafé, 26(2) 55–71.
Arya, M., & Mohan R. L. (2007). An impression of coffee carbohydrates. Critical Reviews in Food Science and Nutrition, 47(1), 51–67. https://doi.org/10.1080/10408390600550315
Baggenstoss, J., Poisson, L., Kaegi, R., Perren, R., & Escher, F. (2008). Coffee Roasting and Aroma Formation: Application of Different Time−Temperature Conditions. Journal of Agricultural and Food Chemistry, 56, 5836–5846. doi:10.1021/jf800327j
Bertrand, B., Vaast, P., Alpizar, E., Etienne, H., Davrieux, F., & Charmetant, P. (2006). Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiology, 26(9), 1239–1248. https://doi.org/10.1093/treephys/26.9.1239
Buffo, R., & Cardelli-Freire, C. (2004). Coffee flavour: an overview. Flavor and fragance journal, 19(2), 99-104. https://doi.org/10.1002/ffj.1325
Clarke, R., & Vitzthum, O.G. (2001). Coffee: Recent Developments. EE.UU: Wiley Online Library.
Clifford, M.N. (2000). Chlorogenic acids and other cinnamates – nature, occurrence, dietary burden, absorption and metabolism. Journal of the Science of Food and Agriculture, 80(7), 1033–1043. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1033::AID-JSFA595>3.0.CO;2-T
Czerny, M., & Grosch, W. (2000). Potent odorants of raw Arabica coffee. Their changes during roasting. Journal of Agricultural and Food Chemistry, 48(3), 868–872. https://doi.org/10.1021/jf990609n
Decazy, F., Avelino, J., Guyot, B., Perriot, J., Pineda, C., Cilas, C. (2003). Quality of different Honduran coffees in relation to several environments. Journal of food science, 68(7), 2356- 2361.
Farah, A. (2012). Coffee Constituents. Coffee. En Yi‐Fang Chu (Ed.), Emerging health effects and disease prevention (pp. 21-58). EE.UU: Wiley Online Library.
Flament, I. (2002). Coffee Flavor Chemistry. Inglaterra: Wiley.
Flor, H. H. (1955). Host - parasite interactions in flax rust its genetics and other implications. Phytopathology, 45, 680 - 685.
Fujioka, K., & Shibamoto, T. (2008). Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chemistry, 106(1), 217–221. https://doi.org/10.1016/j.foodchem.2007.05.091
Gamboa-Becerra, R., Montero-Vargas, J., Martínez-Jarquín, S., Gálvez-Ponce, E., Moreno-Pedraza, A., Winkler, R. (2017). Food Analytical Methods, 10(5), 1359-1368
García-Marin, C., & Puerta-Quintero, G. (2008). Contenido de ácidos clorogénicos en granos de Coffea arabica y C. canephora, según el desarrollo del fruto. Cenicafé, 59(1), 7–28.
González-Ríos, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.P., & Schorr-Galindo, S. (2007). Impact of “ecological” post-harvest processing on coffee aroma: II. Roasted coffee. Journal of Food Composition and Analysis, 20(3–4), 297–307. https://doi.org/10.1016/J.JFCA.2006.12.004
Grosso, G., Godos, J., Galvano, F., & Giovannucci, E. L. (2017). Coffee, Caffeine, and Health Outcomes: An Umbrella Review. Annual Review of Nutrition, 37(1), 131–156. https://doi.org/10.1146/annurev-nutr-071816-064941
Hoyos-Carbajal, L., Gil, V., & Valencia, A. (2003). Estudio de las interacciones de Hemileia vastatrix Coffea spp. : Proteínas tempranas. Cenicafé, 54(4), 278–285.
López, I., Fournier, N., Cid, C., & Guichard, E. (2006). Changes in headspace volatile concentrations of coffee brews caused by the roasting process and the brewing procedure. Journal of Agricultural and Food Chemistry, 54(22), 8560–8566. https://doi.org/10.1021/jf061178t
López-García, F., Escamilla-Prado, E., Zamarripa-Colmenero, A., & Cruz-Castillo, G. (2016). Producción y calidad en variedades de café (Coffea arabica L.). Revista Fitotecnia Mexicana, 39(3), 297–304.
Nüremberg, T. (1999). Signal perception in plant pathogen defense. Multiautor review signaling in plants. Cellular and Molecular Life Sciences, 55, 297- 302.
Pimenta, C.J. (2003). Qualidade de café. Lavras: UFLA.
Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11 (395). https://doi.org/10.1186/1471-2105-11-395
Puerta, G. (2011). Composición química de una taza de café. Cenicafé. Recuperado de: https://www.researchgate.net/publication/324065737_COMPOSICION_QUIMICA_DE_UNA_TAZA_DE_CAFE
Rica, C., & Salvador, E. (2018). Las Variedades del Café Arábiga. Recuperado de: https://worldcoffeeresearch.org/work/coffee-varieties-mesoamerica-and-caribbean/
Smrke, S., Opitz, S., Vovk, I., & Yeretzian, C. (2013). How does roasting affect the antioxidants of a coffee brew? Exploring the antioxidant capacity of coffee via on-line antioxidant assays coupled with size exclusión chromatography. Food Funct, 4, 1082–1092. doi: 10.1039/c3fo30377b
Speer, K., & Kölling-Speer, I. (2006). The lipid fraction of the coffee bean. Brazilian Journal of Plant Physiology, 18 (1) 201–216. https://doi.org/10.1590/S1677-04202006000100014