Abstract
The worldwide development in fruits processing, due to improved preservation techniques, transportation, marketing, and distribution systems, can offer to consumers a wide range of healthy foods increasingly demanded. However, most of the constituents of interest in foodstuffs are temperature sensitive and vulnerable to chemical, physical and microbiological changes. Conventional processes applied in the food industry provide losses of nutritive and bioactive compounds while consuming high levels of energy, time and water. In response to thes disadvantages, in recent years a large number of alternative technologies that enable the processing at low or mild temperatures emerged as potential treatments to inactivate enzymes and microorganisms with minimum adverse effects on the food quality parameters. Studies who focus on the fruit processing allow to obtain comprehensive information about the behavior of these materials during different treatments, to contribute to the development of quality food, safe and healthy to maintain, as long as possible, the nutritional and organoleptic characteristic of fresh products.
Para citar este artículo
Gamboa-Santos, J., Rodríguez, J., Carvajal, G. y Pilamala, A. (2016). Aplicación de tecnologías emergentes al procesamiento de frutas con elevada calidad nutricional. – Una revisión. Rev. Colomb. Investig. Agroindustriales, 3(1), 57-75. DOI: http://dx.doi.org/10.23850/24220582.361
References
Abid, M., Jabbar, S., Wu, T., Hashim, M.M., Hu, B., Lei, S. & Zeng, X. (2014a.) Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice. Ultrason Sonoch, 21(1), 93–97. http://dx.doi.org/10.1016/j.ultsonch.2013.06.002
Abid, M., Jabbar, S., Hu, B., Hashim, M.M., Wu, T., Lei, S., Khan, M.A. & Zeng, X. (2014b). Thermosonication as a potential quality enhancement technique of apple juice. Ultrason Sonoch, 21(3), 984–990. http://dx.doi.org/10.1016/j.ultsonch.2013.12.003
Aday, M.S., Temizkan, R., Büyukcan, M.B. & Caner, C. (2013). An innovative technique for extending shelf life of strawberry. LWT-Food Sci Technol, 52(2), 93-101. http://dx.doi.org/10.1016/j.lwt.2012.09.013
Agcam, E., Akyıldız, A., & Akdemir E. G. (2014). Comparison of phenolic compounds of orange juice processed by pulsed electric fields PEF and conventional thermal pasteurization. Food Chem, 143, 354–361. http://dx.doi.org/10.1016/j.foodchem.2013.07.115
Alupului, A. (2012). Microwave extraction of active principles from medicinal plants. U.P.B. Science Bulletin, Series B, 74 (2). 129-142. http://scientificbulletin.upb.ro/rev_docs_arhiva/fullf4b_141413.pdf
Amami, E., Khezami, L., Jemai, A.B. & Vorobiev, E. (2014). Osmotic dehydration of some agro-food tissue pre-treated by pulsed electric field: Impact of impeller’s Reynolds number on mass transfer and color. J King Saud Univ – Engineer Sci, 26(1), 93–102. http://dx.doi.org/10.1016/j.jksues.2012.10.002
Ayala-Zavala, J.F. et al. (2011). Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Research Int, 44(7), 1866–1874. http://dx.doi.org/10.1016/j.foodres.2011.02.021
Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Juhurul, M.H.A., Ghafoor, K., Norulaini, N.A.N. & Omar, A.K.M. (2013). Techniques for extraction of bioactive compounds from plan materials: a Review. J Food Eng, 117(4), 426-436. http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014
Bagherian, H., Ashtiani, F.Z., Fouladitajar, F. & Mohtashamy, M. (2011). Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Proc, 50(11-12), 1237– 1243. http://dx.doi.org/10.1016/j.cep.2011.08.002
Barati, E. & Esfahani, J.A. (2013). A novel approach to evaluate the temperature during drying of food products with negligible external resistance to mass transfer. J Food Eng, 114(1), 39-46. http://dx.doi.org/10.1016/j.jfoodeng.2012.07.028
Barba, F.J., Jäger, H., Meneses, N., Esteve, M.J., Frígola, A. & Knorr, D. (2012). Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innov Food Sci Emerg Technol, 14, 18-24. http://dx.doi.org/10.1016/j.ifset.2011.12.004
Barba, F.J., Parniakov, O., Pereira, S.A., Wiktor, V., Grimi, N., Bousetta, N., Saraiva, J.A., Roso, J., Martín-Belloso, O., Witrowa-Rajchert, D., Lebovka, N. & Vorobiev, E. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int, 77(4), 773-798. http://dx.doi.org/10.1016/j.foodres.2015.09.015
Barteri, M., Diociaiuti, M., Pala, A. & Rotella, S. (2004). Low frequency ultrasound induces aggregation of porcine furnarase by free radicals production. Biophy Chem, 111(1), 35–42. http://dx.doi.org/10.1016/j.bpc.2004.04.002
Brines, C., Mulet, A., García-Pérez, J.V., Riera, E. & Cárcel, J.A. (2015). Influence of the ultrasonic power applied on freeze drying kinetics. Phys Procedia, 70, 850-853. http://dx.doi.org/10.1016/j.phpro.2015.08.174
Bryant, G. & Wolfe, J. (1987). Electromechanical stress produced in the plasma membranes of suspended cells by applied electrical fields. J Membr Biol, 96 (2), 129-139.
Cárcel J.A., Benedito, J., Roselló, C. & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. J Food Eng, 78(2), 472-479. http://dx.doi.org/10.1016/j.jfoodeng.2005.10.018
Cares, M.G., Vargas, Y., Gaete, L., Sainz, J. & Alarcón, J. (2010). Ultrasonically assisted Extraction of bioactive principles from Quillaja Saponaria Molina. Phys Proc, 3(1), 169–178. http://dx.doi.org/10.1016/j.phpro.2010.01.024
Cendres, A., Chemat, F., Maingonnat, J.F. & Renard, C.M.G.C. (2011). An innovative process for extraction of fruit juices using microwave heating. LWF-Food Sci Technol, 44(4), 1035-1041. http://dx.doi.org/10.1016/j.lwt.2010.11.028
Cendres, A., Hoerlé, M., Chemat, F. & Renard, C.M.G.C. (2014). Different compounds are extracted with different time courses from fruits during microwave hydrodiffusion: Examples and possible causes. Food Chem, 154, 179–186. http://dx.doi.org/10.1016/j.foodchem.2014.01.004
Chemat, F., Zill-e-Huma, & Khan, M.K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonoch. 18(4), 813-835. http://dx.doi.org/10.1016/j.ultsonch.2010.11.023
Cruz, L., Clemente, G., Mulet, A., Ahmad-Qasem, M.H., Borrajón-Catalán, E. & García-Pérez, J.V. (2016). Air-born ultrasonic application in the drying of grape skin: kinetic and quality considerations. J Food Eng, 168, 251-258. http://dx.doi.org/10.1016/j.jfoodeng.2015.08.001
De Melo, M.M.R., Barbosa, H.M.A., Passos, C.P. & Silva, C.M. (2014). Supercritical fluid extraction of spent coffee grounds: Measurement of extraction curves, characterization and economic analysis. J Supercritical Fluids, 86, 150-159. http://dx.doi.org/10.1016/j.supflu.2013.12.016
Dembitsky, V.M., Poovarodom, S., Leontowicz, H., Leontowicz, M., Vearasilp, S., Trakhtenberg, S. & Gorinstein, S. (2011). The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Res Int, 44(7), 1671–1701. http://dx.doi.org/10.1016/j.foodres.2011.03.003
Desmesonlouoglou, E., Zachariou, I., Andreou, V. & Taoukis, P.S. (2016). Effect of pulsed electric fields on mass transfer and quality of osmotically dehydrated kiwifruit. Food Bioprod Process, 100(Part B), 535-544. http://dx.doi.org/10.1016/j.fbp.2016.08.009
Eberhardt, M.V., Lee, C.Y. & Liu, R.H. (2000). Antioxidant activity of fresh apples. Nature, 405, 903-904. http://dx.doi.org/10.1038/35016151
FAOSTAT, (2016). Crops and livestock products. http://faostat3.fao.org/browse/T/TP/E
Fernandes, F.A.N., Galläo, M.I. & Rodrigues, S. (2008a). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: melon dehydration. LWT-Food Sci Technol, 41(4), 604–610. http://dx.doi.org/10.1016/j.lwt.2007.05.007
Fernandes, F.A.N., Oliveira, F.I.P. & Rodrigues, S. (2008b). Use of ultrasound for dehydration of papayas. Food Biopr Technol, 1(4), 339-345. http://dx.doi.org/10.1007/s11947-007-0019-9
Fernandes, F.A.N., Galläo, M.I. & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. J Food Eng, 90(2), 186-190. http://dx.doi.org/10.1016/j.jfoodeng.2008.06.021
Fernandes, F.A.N., Rodrigues, S., Law, C.L. & Mujumdar, A.S. (2011). Drying of exotic tropical fruits: a comprehensive review. Food Biopr Technoln, 4(2), 163-185. http://dx.doi.org/10.1007/s11947-010-0323-7
Fernandes, F.A.N. & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. J Food Eng, 82(2), 261-267. http://dx.doi.org/10.1016/j.jfoodeng.2007.02.032
FSA. (2010). Eat well: 8 tips for making healthier choices. http://www.food.gov.uk/multimedia/pdfs/publication/eatwell0708.pdf
Galanakis, C.M. (2013). Emerging technologies for the production of nutraceuticals from agricultural by-products: A viewpoint of opportunities and challenges. Food Bioprod Proc, 91(4), 575–579. http://dx.doi.org/10.1016/j.fbp.2013.01.004
Gallego-Juárez, J.A. (2010). High-power ultrasonic processing: recent developments and prospective advances. Phy Proc, 3(1), 35-47. http://dx.doi.org/10.1016/j.phpro.2010.01.006
Gamboa-Santos, J., Montilla, A., Cárcel, J.A., Villamiel, M. & García-Pérez, J.V. (2014a). Air-borne ultrasound application in the convective drying of strawberry. J Food Eng, 128, 132-139. http://dx.doi.org/10.1016/j.jfoodeng.2013.12.021
Gamboa-Santos, J., Montilla, A., Soria, A.C., Cárcel, J.A., García-Pérez, J.V. & Villamiel, M. (2014b). Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection. Food Chem, 161, 40–46. http://dx.doi.org/ 10.1016/j.foodchem.2014.03.106
Gamboa-Santos, J., Montilla, A., Soria, A.C. & Villamiel, M. (2012). Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. Eur Food Res Technol, 234(6), 1071–1079. http://dx.doi.org/ 10.1007/s00217-012-1726-7
Gamboa-Santos, J., Soria, A.C., Villamiel, M. & Montilla, A. (2013a). Quality parameters in convective dehydrated carrots blanched by ultrasound and conventional treatment. Food Chem, 141(1), 616-624. http://dx.doi.org/10.1016/j.foodchem.2013.03.028
Gamboa-Santos, J., Soria, A.C., Pérez-Mateos, M., Carrasco, J.A., Montilla, A. & Villamiel, M. (2013b). Vitamin C and sensorial properties of dehydrated carrots blanched conventionally or by ultrasound. Food Chem, 136(2), 782-788. http://dx.doi.org/10.1016/j.foodchem.2012.07.122
García-Noguera, J. et al. (2010). Ultrasound-assisted osmotic dehydration of strawberries: effect of pretreatment time and ultrasonic frequency. Dry Technol, 28 (2), 294-303. http://dx.doi.org/10.1080/07373930903530402
García-Pérez, J.V., Cárcel, J.A., Benedito, J. & Mulet, A. (2007). Power ultrasound mass transfer enhancement in food drying. Food Bioprod Process, 85(3), 247-254. http://dx.doi.org/10.1205/fbp07010
Ghafoor, K., Choi, Y.H., Jeon, J.Y. & Jo, I.H. (2009). Optimization of ultrasound-assisted extraction of phenolics compounds, antioxidants and anthocyanins from grape Vitis Vinifera seeds. J Agric Food Chem, 57(11), 4988-4994. http://dx.doi.org/10.1021/jf9001439
Giner-Segui, J., Elez-Martinez, P. & Martin-Belloso, O. (2009). Modeling within the bayesian framework, the inactivation of pectinesterase in gazpacho by pulsed electric fields. J Food Eng, 95 (3), 445–452. http://dx.doi.org/10.1016/j.jfoodeng.2009.06.006
González-Centeno, M.R., Knoerzer, K., Sabarez, H., Simal, S., Roselló, C. & Femenia, A. (2014). Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace Vitis Vinifera L.- A response surface approach. Ultrason Sonoch, 21(6), 2176-2184. http://dx.doi.org/10.1016/j.ultsonch.2014.01.021
Heinz, V., Toepfl, S. & Knorr, D. (2003). Impact of temperature on lethality and energy efficiency of Apple juice pasteurization by pulsed electric fields treatment. Innov Food Sci Emerg Technol, 4 (2), 167-175. http://dx.doi.org/10.1016/S1466-8564 (03)00017-1
Huang. K., Tian, H., Gai, L. & Wang, J. (2012). A review of kinetic models for inactivating microorganisms and enzymes by pulsed electric field processing. J Food Eng, 111(2), 191-207. http://dx.doi.org/10.1016/j.jfoodeng.2012.02.007
Igual, M., Contreras, C. & Martínez-Navarrete, N. (2010). Non-conventional technologies to obtain grapefruit jam. Innov Food Sci Emerg Technol, 11(2), 335–341. http://dx.doi.org/ 10.1016/j.ifset.2010.01.009
Igual, M., García-Martínez, E., Camacho, M.M. & Martínez-Navarrete, N. (2013). Jam processing and storage effects on ß-carotene and flavonoids content in grapefruit. J Functional Foods, 5(2), 736–744. http://dx.doi.org/10.1016/j.jff.2013.01.019
Jabbar, S., Abid, M., Hu, B., Wu, T., Hashim, M.M., Lei, S., Zhu, X. & Zeng. X. (2014). Quality of carrot juice as influenced by blanching and sonication treatments. LWT - Food Sci Technol, 55(1), 16-21. http://dx.doi.org/10.1016/j.lwt.2013.09.007
Jain, T. (2009). Microwave assisted extraction for phytoconstituents-an overview. Asian J Res Chem, 2(1), 19-25.
Jermann, C., Koutchma, T., Margas, E., Leadley, C. & Ros-Polski, V. (2015). Mapping trends in novel and emerging food processing technologies around the world. Innov Food Sci Emerg Tech 31, 14-27. http://dx.doi.org/10.1016/j.ifset.2015.06.007
Keenan, D.F.; Röble, C.; Gormley, R.; Butler, F. & Brunton, N.P. (2012). Effect of high hydrostatic pressure and thermal processing on the nutritional quality and enzyme activity of fruit smoothies. LWT - Food Sci Technol, 45(1), 50-57. http://dx.doi.org/10.1016/j.lwt.2011.07.006
Kek, P.; Chin, N.L. & Yusof, Y.A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food Biopr Proc, 91(4), 495–506. http://dx.doi.org/10.1016/j.fbp.2013.05.003
Kesbi, O.M., Sadeghi, M. & Mireei, S.A. (2015). Quality assessment and modeling of microwave-convective drying of lemon slices. Eng Agric Environm Food, 9(3), 216–223. http://dx.doi.org/10.1016/j.eaef.2015.12.003
Kowalski, S.J. & Szadzinska, J. (2014). Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chem Eng Process: Process Intensification, 82, 65-70. http://dx.doi.org/10.1016/j.cep.2014.05.006
Kowalski, S.J. & Pawlowski, A. (2015). Intensification of apple drying due to ultrasound enhancement. J Food Eng, 156, 1-9. http://dx.doi.org/10.1016/j.jfoodeng.2015.01.023
Lamanauskas, N., satkauskas, S., Bobinaité, R. & Viskelis, P. (2014). Pulsed Electric Field (PEF) impact on Actinidia Kolomikta drying efficiency. J Food Process Eng, 38(3), 243-249. http://dx.doi.org/10.1111/jfpe.12161
Landete, J.M. (2012). Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. Crit Rev Food Sci Nutr, 52(10), 936-948. http://dx.doi.org/ 10.1080/10408398.2010.513779
Leonelli, C. & Mason, T.J. (2010). Microwave and ultrasonic processing: Now a realistic option for industry. Chem Eng Process: Proc Intensif, 49 (9), 885-900. http://dx.doi.org/10.1016/j.cep.2010.05.006
Leong, S.Y. & Oey, I. (2014). Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes). Food Chem, 146, 538-547. http://dx.doi.org/10.1016/j.foodchem.2013.09.096
Luque de Castro, M.D. & Delgado-Povedano, M.M. (2014). Ultrasound: a subexploited tool for sample preparation in metabolomics. Analytica Chimica Acta, 806, 74-84.
Maloney, N. & Harrison, M. (2016). Advanced heating technologies for food processing. In: Leadley, C. (Eds.). Innovation and future trends in food manufacturing and supply chain technologies. Woodhead Publishing, England.
Maresca, P., Donsi, F. & Ferrari, G. (2011). Application of a multi-pass high-pressure homogenization treatment for the pasteurization of fruit juices. J Food Eng, 104, 364-372. http://dx.doi.org/10.3389/fmicb.2016.01132
Mesas, A.E. Muñoz-Pareja, M., López-García, E. & Rodríguez-Artalejo, F. (2012). Selected eating behaviors and excess body weight, a systematic review. Obesity Rev. 13 (2), 106-135. http://dx.doi.org/10.1111/j.1467-789X.2011.00936.x
Minjares-Fuentes, R., Femenia, A., Garau, M.C., Meza-Velázquez, J.A., Simal, S. & Roselló, C. (2014). Ultrasound-assited extraction of pectins from grape pomace using citric acid: a response surface methodology approach. Carboydrate Polymers, 106, 179-189. http://dx.doi.org/10.10161j.carbpol.2014.02.013
Monteiro, R.L., Carciofi, B.A.M. & Laurindo, J.B. (2016). A microwave multi-flash drying process for producing crispy bananas. J Food Eng, 178, 1-11. http://dx.doi.org/10.1016/j.jfoodeng.2015.12.024
Morelli, L. & Prado, M.A. (2012). Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology. Ultrason Sonoch, 19(6), 1144-1149. http://dx.doi.org/10.1016/j.ultsonch.2012.03.009
Mothibe, K.J., Zhang, M., Nsor-atindana, J. & Wang, Y.C. (2011). Use of ultrasound pretreatment in drying of fruits: drying rates, quality attributes, and shelf life extension. Dry Technol, 29(14), 1611–1621. http://dx.doi.org/10.1080/07373937.2011.602576
Moussa-Ayoub, T.E., Jaeger, H., Youssef. K., Knorr, D., El-Samahy, S., Kroh, L.W. & Rohn, S. (2016). Technological characteristics and selected bioactive compounds of Opuntia dillenii cactus fruit juice following the impact of pulsed electric field pre-treatment. Food Chem, 210, 249-261. http://dx.doi.org/10.1016/j.foodchem.2016.04.115
Nascimento, E., Mulet, A., Ramírez, J.L., Wanderlei Piler de Carvalho, C. & Cárcel, J. (2016). Effect of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. J Food Eng 170, 108-118. http://dx.doi.org/10.1016/j.jfoodeng.2015.09.015
Nowacka, M., Tylewicz, U., Laghi, L., Dalla Rosa, M. & Witrowa-Rajchert, D. (2014). Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chem, 144, 18-25. http://dx.doi.org/10.1016/j.foodchem.2013.05.129
O’Donnell, C.P., Tiwari, B.K., Bourke, P. & Cullen, P.J. (2010). Effect of ultrasonic processing on food enzymes of industrial importance. Trends Food Sci Technol, 21(7), 358-367. http://dx.doi.org/10.1016/j.tifs.2010.04.007
Odriozola-Serrano, I., Soliva-Fortuny, R. & Martin-Belloso, O. (2007). Lycopene, vitamin C, and antioxidant capacity of tomato juice as affected by high-Intensity pulsed electric fields critical parameters. J Agric Food Chem, 55 (22), 9036-9042. http://dx.doi.org/ 10.1021/jf0709101
Odriozola-Serrano, I., Soliva-Fortuny, R. & Martin-Belloso, O. (2009). Impact of high intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidant capacity of strawberry juice. LWT - Food Sci Technol, 42(1), 93–100. http://dx.doi.org/10.1016/j.lwt.2008.05.008
Ojha, K.S., Tiwari, B.K. & O’Donnell, C. (2016). Emerging nonthermal food preservation technologies. In: Leadley, C. (Eds.). Innovation and Future Trends in Food Manufacturing and Supply Chain Technologies. Woodhead Publishing, England.
Oliveira, F. I. P., Gallão, M. I., Rodrigues, S. & Fernandes, F.A.N. (2011). Dehydration of Malay apple Syzygium malaccense L. using ultrasound as pre-treatment. Food Biopr Technol, 44(4), 610–615. http://dx.doi.org/10.1007/s11947-010-0351-3
Oms-Oliu, G., Odriozola-Serrano, I., Soliva-Fortuny, R., Elez-Martínez, P. & Martín-Belloso, O. (2012). Stability of health-related compounds in plant foods through the application of non termal processes. Trends Food Sci Technol, 23(2), 111-123. http://dx.doi.org/10.1016/j.tifs.2011.10.004
Orio, L., Cravotto, G., Binello, A., Pignata, G., Nicola, S. & Chemat, F. (2012). Hydrodistillation and in situ microwave-generated hydrodistillation of fresh and dried mint leaves: A comparison study. J Sci Food Agric, 92 (15), 3085–3090. http://dx.doi.org/10.1002/jsfa.5730
Ortuño, C., Pérez-Munuera, I., Puig, A., Riera, E. & Garcia-Perez, J.V. (2010). Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying. Phys Procedia, 3(1), 153-159. http://dx.doi.org/10.1016/j.phpro.2010.01.022
Ozuna, C., Gómez Álvarez-Arenas, T., Riera, E., Cárcel, J.A. & García-Pérez, J.V. (2014). Influence of material structure on air-borne ultrasonic application in drying. Ultra Sonochem, 21(3), 1235-1243. http://dx.doi.org/10.1016/j.ultsonch.2013.12.015
Pan, Z., Qu, W., Ma, H., Atungulu, G.G. & McHugh, T.H. (2011). Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason Sonoch, 18(5), 1249-1257. http://dx.doi.org/10.1016/j.ultsonch.2011.01.005
Picó (2013). Ultrasound-assisted extraction for food and environmental samples. Trends Analyt Chem, 43, 84-99. http://dx.doi.org/10.1016/j.trac.2012.12.005
Ramos, B., Miller, F.A., Brandao, T.R.S., Teixeira, P. & Silva, C.L.M. (2013). Fresh fruits and vegetables- An overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg Technol, 20, 1-15. http://dx.doi.org/10.1016/j.ifset.2013.07.002
REDAGRÍCOLA. (2016). Las frutas exóticas ganan terreno en el mundo. http://www.redagricola.com/noticias/las-frutas-exoticas-ganan-terreno-en-el-mundo
Rodrigues, S., Oliveira, F.I.P., Galläo, M.I. & Fernandes, F.A.N. (2009). Effect of immersion time in osmosis and ultrasound on papaya cell structure during dehydration. Dry Technol, 27(2), 220-225. http://dx.doi.org/10.1080/07373930802605883
Rodriguez, O., Santacatalina, J.V., Simal, S., García-Pérez, J.V., Femenia, A. & Roselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. J Food Eng, 129, 21-29. http://dx.doi.org/10.1016/j.jfoodeng.2014.01.001
Sablani, S.S., Andrews, P.K., Davies, N.M., Walters, T., Saez, H. & Bastarrachea, L. (2011). Effects of air and freeze drying on phytochemical content of conventional and organic berries. Dry Technol, 29(2), 205-216. http://dx.doi.org/10.1080/07373937.2010.483047
Santacatalina, J.V., Contreras, M., Simal, S., Cárcel, J.A. & García-Pérez, J.V. (2016). Impact of applied ultrasonic power on the low temperature drying of apple. Ultra Sonochem, 28, 100-108. http://dx.doi.org/10.1016/j.ultsonch.2015.06.027
Santacatalina, J.V., Fissore, D., Cárcel, J.A., Mulet, A. & García-Pérez, J.V. (2015). Model-based investigation into atmospheric freeze drying assisted by power ultrasound. J Food Eng, 151, 7-15. http://dx.doi.org/10.1016/j.jfoodeng.2014.11.013
Santacatalina, J.V., Rodríguez, O., Simal, S., Cárcel, J.A., Mulet, A. & García-Pérez, J.V. (2014). Ultrasonically enhanced low-temperature drying of apple: influence on drying kinetics and antioxidant potential. J Food Eng, 138, 35-44. http://dx.doi.org/10.1016/j.jfoodeng.2014.04.003
Seixas, F.L., Fukuda, D.L., Turbiani, F.R.B., Garcia, P.S., de O. Petkowicz, C.L., Jagadevan, S. & Gimenes, M.L. (2014). Extraction of pectin from passion fruit peel Passiflora edulis f. flavicarpa by microwave-induced heating. Food Hydroc, 38, 186-192. http://dx.doi.org/10.1016/j.foodhyd.2013.12.001
Sharif, K.M., Rahmana, M.M. J., Azmira, A., Mohamed, M.H.A., Sahena, J.F. & Zaidula, I.S.M. (2014). Experimental design of supercritical fluid extraction- A review. J food Eng, 124, 105-116. http://dx.doi.org/10.1016/j.jfoodeng.2013.10.003
Soria, A.C., Corzo-Martinez, M., Montilla, A., Riera, E., Gamboa-Santos, J. & Villamiel, M. (2010). Chemical and physicochemical quality parameters in carrots dehydrated by power ultrasound. J Agric Food Chem, 58(13), 7715–7722. http://dx.doi.org/10.1021/jf100762e
Soria, A.C., & Villamiel, M. (2010). Effect of ultrasound on the Technological properties and bioactivity in foods: A review. Trends Food Sci Technol, 21(7), 323-331. http://dx.doi.org/10.1016/j.tifs.2010.04.003
Szadzinska, J., Kowalski, S.J. & Stasiak, M. (2016). Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. Int J Heat Mass Transfer, 103, 1065-1074. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.08.001
Terefe, N.S., Gamage, M., Vilkhu, K. & Simons, L. (2009). The kinetics of inactivation of pectin methylesterase and polygalacturonase in tomato juice by thermosonication. Food Chem, 117(1), 20-27. http://dx.doi.org/10.1016/j.foodchem.2009.03.067
Tiwari, B.K. & Mason, T.J. (2012). Ultrasound processing of fluid foods. In: Novel thermal and non-thermal technologies for fluid foods. http://dx.doi.org/10.1016/B978-0-12—381470-8.00006-2
Traffano-Schiffo, M.V., Tylewica, U., Castro-Giraldez, M., Fito, P.J., Ragni, L. & Dalla Rosa, M. (2016). Effect of pulsed electric fields pre-treatment on mass transport during the osmotic dehydration of organic kiwi fruit. Innov Food Sci Emerg Tech, 38(Part A), 243-251. http://dx.doi.org/10.1016/j.ifset.2016.10.011
Turk, M., Vorobiev, E. & Baron, A. (2012). Improving apple juice expression by pulsed electric field on an industrial scale. LWT – Food Sci Technol, 49(2), 245–250. http://dx.doi.org/10.1016/j.lwt.2012.07.024
Vadivambal, R. & Jayas, D.S. (2009). Comparison of ultrasound and microwave-assisted drying of agricultural product – a review. Stew Postharvest Rev, 5(5), 1-6. http://dx.doi.org/10.2212/spr.2009.5.2
Vallverdú-Queralt, A., Odriozola-Serrano, I., Oms-Oliu, G., Lamuela-Raventós, R.M., Elez-Martínez, P. & Martín-Belloso, O. (2013). Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes. Food Chem, 141(3), 3131–3138. http://dx.doi.org/10.1016/j.foodchem.2013.05.150
Veggi, P.C., Calvacanti, R.N., Angela, N. & Meireles, A. (2014). Production of phenolic-rich extracts from Brazilian plants using supercritical and subcritical fluid extraction: Experimental data and economic evaluation. J Food Eng, 131, 96-109. http://dx.doi.org/10.1016/j.jfoodeng.2014.01.027
Wang, X., Chen, Q. & Lü, X. (2014). Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydroc, 38, 129-137. http://dx.doi.org/10.1016/j.foodhyd.2013.12.003
Wiktor, A., Iwaniuk, M., Sledz, M., Nowacka, M., Chudoba, T. & Witrowa-Rajchert, D. (2013). Drying kinetics of apple tissue treated by pulsed electric field. Dry Tech, 31 (1), 112-119. http://dx.doi.org/10.1080/07373937.2012.724128
Wootton-Beard. P.C. & Ryan, L. (2011). Improving public health?: The role of antioxidant-rich fruit and vegetable beverages. Food Res Int, 44(10), 3135-3148. http://dx.doi.org/10.1016/j.foodres.2011.09.015
Zarein, M., Samadi, S.H. & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. J Saudi Society Agric Sci, 14(1), 41-47. http://dx.doi.org/10.1016/j.jssas.2013.06.002
Zhong, Q., Sandeep, K.P. & Swartzel, K.R. (2004). Continuous flow radio frequency heating of particulate foods. Innov Food Sci Emerg Technol, 5 (4), 475–483. http://dx.doi.org/10.1016/j.ifset.2004.07.004
Zhu, Y. & Pan, Z. (2009). Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating. J Food Eng, 90(4), 441-452. http://dx.doi.org/10.1016/j.jfoodeng.2008.07.015
Zielinska, M. & Markowski, M. (2016). The influence of microwave-assisted drying techniques on the rehydration behaviour of blueberries (Vaccinium Corymbosum L.). Food Chem, 196, 1188-1196. http://dx.doi.org/10.1016/j.foodchem.2015.10.054
Zielinska, M. & Michalska, A. (2016). Microwave-assisted drying of blueberry (Vaccinium Corymbosum L.) fruits: drying kinetics, polyphenols, anthocyanins, antioxidant-capacity, color and texture. Food Chem, 212, 671-680. http://dx.doi.org/10.1016/j.foodchem.2016.06.003