Incorporation of starch or starch-xanthan mixtures in renneted milk systems to improve yield and texture
PDF (Español (España))
XML (Español (España))


wheat starch
potato starch
modified starch
rennet milk system
cheese yield
whey release almidón de trigo
almidon de papa
almidones modificados
sistemas lacteos coagulados
rendimiento quesero

How to Cite

Totosaus, A. ., & Pineda-Calderón, L. (2021). Incorporation of starch or starch-xanthan mixtures in renneted milk systems to improve yield and texture. Revista Colombiana De Investigaciones Agroindustriales, 7(2), 68–75.


In order to improve the yield and texture of fresh type cheese, different types of starch or their combination with xanthan gum were tested in a model system, to determine the effect of these ingredients on the yield, whey release, syneresis, and moisture, as well as the texture parameter as hardness, adhesiveness, cohesiveness, and springiness. Wheat starch, potato starch, Gelamil modified starch and Nifragel modified starch was employed at 5% (W7v), or their combination with xanthan gum (1% (w/v) in a rennet milk system. To employ starches with xanthan gum resulted in higher yields and lower whey released volume, besides present lower syneresis and more moisture, due to the water retention properties of the ingredients. This attribute was also reflected in harder but more adhesive and less cohesive and elastic texture, due to the reduced water mobility in the system by the action of the starch and xanthan gum. Under the experimental conditions, native starches with xanthan gum have the better performance, since the rennet milk systems imply a precipitated gel with a casein matrix with net charge close to its isoelectric point, a characteristic that makes difficult the interaction with other hydrocolloids, and hence ingredients like starches that act as fillers with the xanthan gum have a strong impact on moisture retention in these types of foods.
PDF (Español (España))
XML (Español (España))


Alloncle, M.; Doublier, J.-L. (1991). Viscoelastic properties of maize starch/hydrocolloid pastes and gels. Food Hydrocolloid., 5, 455-467.
AOAC (1996) Association of Official Analytical Chemist. Official Methods of Analysis (16th ed.). Washington DC: Association of Official Analytical Chemists.
Belitz, H.-D.; Grosch, W.; Schieberle, P. (2009). Food Chemistry (pp. 315-327, 331). Berlin: Springer-Verlag.
Bello-Pérez, L.A.; Contreras-Ramos, S.M.; Romero-Manilla, R.; Solorza-Feria, J.; Jiménez-Aparicio, A. (2002). Propiedades químicas y funcionales del almidón modificado de plátano Musa paradisiaca L. (var. macho). Agrociencia, 36, 169-180.
Bourne, M.C. (1978). Texture Profile Analysis. Food Technol., 32(7), 62-66, 72.
Brown, K.M.; Mcmanus, W.R.; Mcmahon, D.J. (2012). Starch addition in renneted milk gels: Partitioning between curd and whey and effect on curd syneresis and gel microstructure. J. Dairy Sci., 95, 6871-6881.
Cai, X.; Hong, Y.; Gu, Z.; Zhang, Y. (2011). The effect of electrostatic interactions on pasting properties of potato starch/xanthan gum combinations. Food Res. Int., 44, 3079-3086.
Choi, H.M.; Yoo, B. (2009). Steady and dynamic shear rheology of sweet potato starch–xanthan gum mixtures. Food Chem., 116, 638-643.
Christianson, D.D.; Hodge, J.E.; Osborne, D.; Detroy, R.W. (1981). Gelatinization of wheat starch as modified by xanthan gum, guar gum, and cellulose gum. Cereal Chem., 58, 513-517.
Der, G.; Everitt, B.S. (2008). A Handbook of Statistical Analyses using SAS, 3rd ed. (pp. 99-109). London: Chapman & Hall/CRC.
Gampala, P.; Brennan, C.S. (2008). Potential starch utilisation in a model processed cheese system. Starch-Stärke. 60: 685-689.
Green, M.L.; Grandison, A.S. (1993). Secondary (non-enzymatic) phase of rennet coagulation and post-coagulation phenomena. En P.F. Fox (Ed.), Cheese: Chemistry, Physics and Microbiology, 2nd ed. (pp. 101-140). Boston: Springer.
Kim, C.; Yoo, B. (2006). Rheological properties of rice starch–xanthan gum mixtures. J. Food Eng., 75, 120-128.
Lucey, J.A. (2020). Milk proteins. En M. Boland, y H. Singh (Eds). Milk Proteins, From Expression to Food, 3rd ed. (pp. 599-632). New York: Elsevier Academic Press.
Lucey, J.A.; Horne, D.S. (2018). Perspective on casein interactions. Int. Dairy J., 85, 56-65.
Miranda-Villa, P.P.; Marrugo-Ligardo, Y.A.; Montero-Castillo, P.M. (2013). Caracterización funcional del almidón de fríjol Zaragoza (Phaseolus Lunatus L.) y cuantificación de su almidón resistente. TecnoLógicas, 30, 17-32.
Mounsey, J.S.; O’Riordan, D. (2001). Characteristics of imitation cheese containing native starches. J. Food Sci., 66, 586-591.
Mounsey, J.S. (2009). Effect of wheat starch on imitation cheese texture. J. Food Technol., 7: 30-33.
Noronha, N.; Duggan, E.; Ziegler, G.R.; O’Riordan, D.; O’Sullivan, M. (2008). Inclusion of starch in imitation cheese: Its influence on water mobility and cheese functionality. Food Hydrocolloid., 22, 1612-1621. https://10.1016/j.foodhyd.2007.11.007
Olsen, R.L. (1989). Effects of Polysaccharides on rennet coagulation of skim milk proteins. J. Dairy Sci., 72, 1695-1700.
Pacheco De Delahaye, E.; Techeira, N. (2009). Propiedades químicas y funcionales del almidón nativo y modificado de ñame (Dioscorea alata). Interciencia, 34, 280-285.
Shi, X.; Bemiller, J.N. (2002). Effects of food gums on viscosities of starch suspensions during pasting. Carbohyd. Polym., 50, 7-18.
Szczesniak, A.S. (1963). Classification of textural characteristics. J. Food Sci., 28, 385-389.
Walstra, P. (1993). Syneresis of curd. En P.F. Fox (Ed.), Cheese: Chemistry, Physics and Microbiology, 2nd edition (pp. 141-192). Boston: Springer.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Download data is not yet available.