Capacidad antioxidante: conceptos, métodos de cuantificación y su aplicación en la caracterización de frutos tropicales y productos derivados
PDF
XML

Palabras clave

ABTS
antioxidantes
alimento funcional
frutas tropicales
DPPH
FRAP
Trolox ABTS
antioxidants
functional food
DPPH
FRAP
superfruits
Trolox

Cómo citar

Vázquez-Ovando, A., Mejía-Reyes, J. D. ., García-Cabrera, K. E. ., & Velázquez-Ovalle, G. . (2022). Capacidad antioxidante: conceptos, métodos de cuantificación y su aplicación en la caracterización de frutos tropicales y productos derivados. Revista Colombiana De Investigaciones Agroindustriales, 9(1), 9–33. https://doi.org/10.23850/24220582.4023

Resumen

La capacidad antioxidante se ha convertido en una característica ampliamente demandada en los alimentos contemporáneos. El conocimiento de las moléculas que imparten esta actividad, así como los alimentos donde pueden encontrarse de manera natural, aporta información para el correcto aprovechamiento de estas importantes sustancias. Sin embargo, aún hoy día, los métodos para medir la capacidad antioxidante in vitro siguen poco unificados. Aunque existen al menos tres métodos universalmente utilizados, las unidades en la que se expresan los resultados son heterogéneas, lo que dificulta un poco la comparación certera entre muestras de naturaleza similar. El objetivo del presente artículo fue realizar una revisión sobre aspectos fundamentales de la capacidad antioxidante, con énfasis en las moléculas responsables de tal actividad y los métodos disponibles para cuantificarla. Adicionalmente, dado que los alimentos de origen vegetal son la principal fuente natural de compuestos antioxidantes, se incluyen reportes de estudios que cuantifican la capacidad antioxidante de frutos tropicales y de productos o coproductos de éstos.

https://doi.org/10.23850/24220582.4023
PDF
XML

Citas

Abdel-Aal, E.S.M. y Rabalski, I. (2015). Composition of lutein ester regioisomers in marigold flower, dietary supplement, and herbal tea. Journal of Agricultural and Food Chemistry, 63(44): 9740-9746. https://doi.org/10.1021/acs.jafc.5b04430

Abuajah, C.I., Ogbonna, A.C. y Osuji, C.M. (2015). Functional components and medicinal properties of food: A review. Journal of Food Science and Technology, 52: 2522-2529. https://pubmed.ncbi.nlm.nih.gov/25892752/

Akar, Z. y Burnaz, N.A. (2019). A new colorimetric method for CUPRAC assay with using of TLC plate. LWT-Food Science and Technology, 112: 108212. https://doi.org/10.1016/j.lwt.2019.05.110

Apak, R., Ozyurek, M., Güçlü, K. y Capanoğlu, E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64(5): 997-1027. https://doi.org/10.1021/acs.jafc.5b04739

Arús, B.A., Souza, D.G., Bellaver, B., Souza, D.O., Gonçalves, C.A., Quincozes-Santos, A. y Bobermin, L.D. (2017). Resveratrol modulates GSH system in C6 astroglial cells through heme oxygenase 1 pathway. Molecular and Cellular Biochemistry, 428(1-2): 67-77. https://pubmed.ncbi.nlm.nih.gov/28070834/

Banerjee, J., Singh, R., Vijayaraghavan. R., MacFarlane, D., Patti, A.F. y Arora, A. (2017). Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry, 225: 10-22. https://doi.org/10.1016/j.foodchem.2016.12.093

Banerjee, P., Jana, S., Mukherjee, S., Bera, K., Majee, S.K., Ali, I., Pal, S., Ray, B. y Ray, S. (2020). The heteropolysaccharide of Mangifera indica fruit: Isolation, chemical profile, complexation with β-lactoglobulin and antioxidant activity. International Journal of Biological Macromolecules, 165: 93-99. https://pubmed.ncbi.nlm.nih.gov/32980416/

Benítez-Estrada, A., Villanueva-Sánchez, J., González-Rosendo, G., Alcántar-Rodríguez, V.E., Puga-Díaz, R. y Quintero-Gutiérrez, A.G. (2020). Determinación de la capacidad antioxidante total de alimentos y plasma humano por fotoquimioluminiscencia: Correlación con ensayos fluorométricos (ORAC) y espectrofotométricos (FRAP). Revista Especializada en Ciencias Químico-Biológicas, 23: 1-9. https://doi.org/10.22201/fesz.23958723e.2020.0.244

Benzie, I.F. y Devaki, M. (2017). The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations, and applications. Measurement of Antioxidant Activity & Capacity (eds R. Apak, E. Capanoglu and F. Shahidi). https://doi.org/10.1002/9781119135388.ch5

Bjørklund, G. y Chirumbolo, S. (2017). Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition, 33: 311-321. https://doi.org/10.1016/j.nut.2016.07.018

Bustamante-Rangel, M., Delgado-Zamarreño, M.M., Pérez-Martín, L., Rodríguez-Gonzalo, E. y Domínguez-Álvarez, J. (2018). Analysis of isoflavones in foods. Comprehensive Reviews in Food Science and Food Safety, 17(2): 391-411. https://doi.org/10.1111/1541-4337.12325

Camarena-Tello, J., Martínez-Flores, H., Garnica-Romo, M., Padilla-Ramírez, J., Saavedra-Molina, A., Alvarez-Cortes, O., Bartolomé-Camacho, M.C. y Rodiles-López, J.O. (2018). Quantification of phenolic compounds and in vitro radical scavenging abilities with leaf extracts from two varieties of Psidium guajava L. Antioxidants, 7(3): 34. http://dx.doi.org/10.3390/antiox7030034

Can-Cauich, C.A., Sauri-Duch; E., Betancur-Ancona, D., Chel-Guerrero, L., González-Aguilar, G.A., Cuevas-Glory, L.F., Pérez-Pacheco, E. y Moo-Huchin, V.M. (2017). Tropical fruit peel powders as functional ingredients: Evaluation of their bioactive compounds and antioxidant activity. Journal of Functional Foods, 37: 501-506. https://doi.org/10.1016/j.jff.2017.08.028

Courtois, A., Jourdes, M., Dupin, A., Lapèze, C., Renouf, E., Biais, B., Teissedre, P.L., Mérillon, J.M., Richard, T. y Krisa, S. (2017). In vitro glucuronidation and sulfation of ϵ-viniferin, a resveratrol dimer, in humans and rats. Molecules, 22(5): 1-12. https://doi.org/10.3390/molecules22050733

Cui, Q., Du, R., Liu, M. y Rong, L. (2020). Lignans and their derivatives from plants as antivirals. Molecules, 25(1): 183. https://dx.doi.org/10.3390%2Fmolecules25010183

De Souza, A.C., Fernandes, A.C.F., Silva, M.S., Schwan, R.F. y Dias, D.R. (2018). Antioxidant activities of tropical fruit wines. Journal of the Institute of Brewing, 124 (4): 492-497. https://doi.org/10.1002/jib.511

Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82(1): 47-95. https://doi.org/10.1152/physrev.00018.2001

Ellong, E.N., Billard, C., Adenet, S. y Rochefort, K. (2015). Polyphenols, carotenoids, vitamin c content in tropical fruits and vegetables and impact of processing methods. Food and Nutrition Sciences, 6: 299-313. http://dx.doi.org/10.4236/fns.2015.63030

FAO (2020). Análisis del mercado de las principales frutas tropicales. Panorama general de febrero de 2020. Roma. http://www.fao.org/3/ca9213es/ca9213es.pdf

Fenech, M., Amaya, I., Valpuesta, V. y Botella, M.A. (2018). Vitamin C content in fruits: Biosynthesis and regulation. Frontiers in Plant Science, 9: 2006. https://doi.org/10.3389/fpls.2018.02006

Fernando, I.P., Kim, M., Son, K.T., Jeong, Y., y Jeon, Y.J. (2016). Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. Journal of Medicinal Food, 19(7): 615-628. https://doi.org/10.1089/jmf.2016.3706

Galli, F., Azzi, A., Birringer, M., Cook-Mills, J.M., Eggersdorfer, M., Frank, J., Cruciani, G., Lorkowski, S. y Özer, N.K. (2017). Vitamin E: Emerging aspects and new directions. Free Radical Biology and Medicine, 102: 16-36. https://doi.org/10.1016/j.freeradbiomed.2016.09.017

García-Argáez, A.N., González-Lugo, N.M., Márquez, C. y Martínez-Vázquez, M. (2003). Cumarinas presentes en especies del género Casimiroa. Revista de la Sociedad Química de México, 47(2): 151-154. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0583-76932003000200013&lng=es&tlng=es.

Goodarzi, S., Rafiei, S., Javadi, M., Haghighian, H.K. y Noroozi, S. (2018). A review on antioxidants and their health effects. Journal of Nutition and Food Security, 3(2): 106-112. http://jnfs.ssu.ac.ir/article-1-158-en.pdf

Gordo, D.A.M. (2018). Los compuestos fenólicos, un acercamiento a su biosíntesis, síntesis y actividad biológica. Revista de Investigación Agraria y Ambiental, 9(1): 81-104. https://doi.org/10.22490/21456453.1968

Gregoris, E., Pereira, L.G.P., Fabris, S., Bertelle, M., Sicari, M. y Stevanato, R. (2013). Antioxidant properties of brazilian tropical fruits by correlation between different assays. BioMed Research International, 2013: 132759. https://doi.org/10.1155/2013/132759

Guija-Poma, E., Inocente-Camones, M. Ángel, Ponce-Pardo, J. y Zarzosa-Norabuena, E. (2015). Evaluación de la técnica 2,2-Difenil-1-Picrilhidrazilo (DPPH) para determinar capacidad antioxidante. Horizonte Médico (Lima), 15(1), 57–60. https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/148

Gulcin, I. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94: 651-715. https://doi.org/10.1007/s00204-020-02689-3

Gupta, D. (2015). Methods for determination of antioxidant capacity: a review. International Journal of Pharmaceutical Sciences and Research, 6(2): 546-566. http://dx.doi.org/10.13040/IJPSR.0975-8232.6(2).546-66

Hashem, R.M., Hassanin, K.M., Rashed, L.A., Mahmoud, M.O. y Hassan, M.G. (2016). Effect of silibinin and vitamin E on the ASK1-p38 MAPK pathway in d-galactosamine/ lipopolysaccharide induced hepatotoxicity. Experimental Biology and Medicine (Maywood), 241(11): 1250-1257. https://doi.org/10.1177/1535370216636719

Hedayati, N., Naeini, M.B., Nezami, A., Hosseinzadeh, H., Wallace-Hayes, A., Hosseini, S., Imenshahidi, M. y Karimi, G. (2019). Protective effect of lycopene against chemical and natural toxins: A review. BioFactors, 45: 5-23. https://doi.org/10.1002/biof.1458

Hernández, C., Ascacio-Valdés, J., De la Garza, H., Wong-Paz, J., Aguilar, C.N., Martínez-Ávila, G.C., Castro-López, C. y Aguilera-Carbó, A. (2017). Polyphenolic content, in vitro antioxidant activity and chemical composition of extract from Nephelium lappaceum L. (Mexican rambutan) husk. Asian Pacific. Journal of Tropical Medicine, 10(12): 1201-1205. https://doi.org/10.1016/j.apjtm.2017.10.030

Hostetler, G.L., Ralston, R.A. y Schwartz, S.J. (2017). Flavones: Food Sources, bioavailability metabolism, and bioactivity. Advances in Nutrition, 8(3):423-435. https://doi.org/10.3945/an.116.012948

Ibarra-Garza, I., Ramos-Parra, P.A., Hernández-Brenes, C. y Jacobo-Velázquez, D.A. (2015). Effects of postharvest ripening on the nutraceutical and physicochemical properties of mango (Mangifera indica L. cv Keitt). Postharvest Biology and Technology, 103: 45-54. https://doi.org/10.1016/j.postharvbio.2015.02.014

Imran, M., Ghorat, F., Ul-Haq, I., Ur-Rehman, H., Aslam, F., Heydari, M., Shariati, M.A., Okuskhanova, E., Yessimbekov, Z., Thiruvengadam, M., Hashempur, M.H. y Rebezov, M. (2020). Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants, 9(8): 706. https://doi.org/10.3390/antiox9080706

Jiang, N., Doseff, A. y Grotewold, E. (2016). Flavones: From biosynthesis to health benefits. Plants, 5(2): 27. https://dx.doi.org/10.3390%2Fplants5020027

Kamal-Eldin, A. y Budilarto, E. (2015). 6 - Tocopherols and tocotrienols as antioxidants for food preservation. Handbook of Antioxidants for Food Preservation. Woodhead Publishing Series in Food Science, Technology and Nutrition, 2015: 141-159. https://doi.org/10.1016/B978-1-78242-089-7.00006-3

Kaya, B., Kaya, K., Koca, A. y Ülküseven, B. (2019). Thiosemicarbazide-based iron (III) and manganese (III) complexes. Structural, electrochemical characterization and antioxidant activity. Polyhedron, 173: 114130. https://doi.org/10.1016/j.poly.2019.114130

Křížová, L., Dadáková, K., Kašparovská, J. y Kašparovský, T. (2019). Isoflavones. Molecules, 24(6): 1076. https://doi.org/10.3390/molecules24061076

Kumar, V., Mohan, S., Singh, D.K., Verma, D.K., Singh, V.K. y Hasan SH. (2017). Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of Iron (III), antibacterial and antioxidant activity. Materials Science and Engineering: C. 71: 1004-1019. https://doi.org/10.1016/j.msec.2016.11.013

Kwatra, B. (2020). A review on potential properties and therapeutic applications of lycopene. International Journal of Medical and Biomedical Studies, 4(4): 33-44. http://dx.doi.org/10.32553/ijmbs.v4i4.1081

Lachowicz, S., Oszmiański, J., Wiśniewski, R., Seliga, Ł. y Pluta, S. (2019). Chemical parameters profile analysis by liquid chromatography and antioxidative activity of the Saskatoon berry fruits and their components. European Food Research and Technology, 245(9): 2007-2015. https://doi.org/10.1007/s00217-019-03311-2

Lee, G. y Han, S. (2018). The role of vitamin e in immunity. Nutrients, 10(11): 1614. https://doi.org/10.3390/nu10111614

Li, C. y Schluesener, H. (2015). Health-promoting effects of the citrus flavanone hesperidin. Critical Reviews in Food Science and Nutrition, 57(3): 613-631. http://dx.doi.org/10.1080/10408398.2014.906382

Lim, Y.Y., Lim, T.T. y Tee, J.J. (2007). Antioxidant properties of several tropical fruits: A comparative study. Food Chemistry, 103(3): 1003-1008. https://doi.org/10.1016/j.foodchem.2006.08.038

Londoño, J.L. (2012). Antioxidantes: importancia biológica y métodos para medir su actividad. Desarrollo y transversalidad serie Lasallista Investigación y Ciencia (pp. 130-162). Corporación Universitaria Lasallista. http://repository.lasallista.edu.co/dspace/handle/10567/133.

López-Romero, J.C., Ansorena, R., Gonzalez-Aguilar, G.A., Gonzalez-Rios, H., Ayala-Zavala, J.F. y Siddiqui, M.W. (2016). Chapter 5 Applications of plant secondary metabolites in food systems. Plant Secondary Metabolites (Vol. 3, pp. 195-232). Set. http://dx.doi.org/10.1201/9781315207506-16

López-Vargas, J.H., Fernández-López, J., Pérez-Álvarez, J.A. y Viuda-Martos, M. (2013). Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Research International, 51(2): 756-763. https://doi.org/10.1016/j.foodres.2013.01.055

Maharramova, G., Taslimi, P., Sujayev, A., Farzaliyev, V., Durmaz, L. y Gülçin, I. (2018). Synthesis, characterization, antioxidant, antidiabetic, anticholinergic, and antiepileptic properties of novel N-substituted tetrahydropyrimidines based on phenylthiourea. Journal of Biochemical and Molecular Toxicology, 32(12): e22221. https://doi.org/10.1002/jbt.22221

Martínez, R., Torres, P., Meneses, M.A., Figueroa, J.G., Pérez-Álvarez, J.A. y Viuda-Martos, M. (2012). Chemical, technological and in vitro antioxidant properties of cocoa (Theobroma cacao L.) co-products. Food Research International, 49(1): 39-45. https://doi.org/10.1016/j.foodres.2012.08.005

Mercado-Ruiz, J.N., Tortoledo-Ortiz, O., García-Robles, J.M., Báez-Sañudo, R., García-Moreno, B.Y., Ávila-Prado, J., Corella-Salazar, D.A., Cruz-Félix, M.C., Velásquez-Jiménez, D. y Zuñiga-Martínez, B.S. (2019). Calidad comercial de piña MD2 (Ananas comosus L.) tratada en postcosecha con ácido 2-hidroxibenzoico. Revista Iberoamericana de Tecnología Postcosecha, 20(2): 140-154. https://www.redalyc.org/articulo.oa?id=81361553004

Mittler, Ron. (2017). ROS are Good. Trends in Plant Science, 22 (1), 11 – 19. https://doi.org/10.1016/j.tplants.2016.08.002

Moo-Huchin, V.M., Moo-Huchin, M.I., Estrada-León, R.J., Cuevas-Glory, L., Estrada-Mota, I.A., Ortiz-Vázquez, E., Betancur-Ancona, D. y Sauri-Duch, E. (2015). Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chemistry, 166: 17–22. https://doi.org/10.1016/j.foodchem.2014.05.127

Morales, A., Vicente-Sánchez, C., Sandoval, J.M., Tagarro, M., Lopez-Novoa, J. y Pérez-Barriocanal, F. (2004). Efecto de la quercetina sobre la nefrotoxicidad producida por cadmio. Revista de Toxicología 21: 23-30. https://rev.aetox.es/wp/index.php/21-14/

Murthy, P.S. y Naidu, M.M. (2012). Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food and Bioprocess Technology, 5(3): 897-903. https://doi.org/10.1007/s11947-010-0363-z

Musa, K.H., Abdullah, A., Kuswandi, B. y Hidayat, M.A. (2013). A novel high throughput method based on the DPPH dry reagent array for determination of antioxidant activity. Food Chemistry, 141(4): 4102-4106. https://doi.org/10.1016/j.foodchem.2013.06.112

Nichols, A.W., Chatterjee, S., Sabat, M. y Machan, C.W. (2018). Electrocatalytic reduction of CO2 to formate by an iron Schiff base complex. Inorganic Chemistry, 57(4): 2111-2121. https://doi.org/10.1021/acs.inorgchem.7b02955

Nimse, S.B. y Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35): 27986–28006. https://doi.org/10.1039/C4RA13315C

Ochoa-Becerra, M., Mojica-Contreras, L., Hsieh-Lo, M., Mateos-Díaz, J. y Castillo-Herrera, G. (2020). Lutein as a functional food ingredient: Stability and bioavailability. Journal of Functional Foods, 66: 103771. https://doi.org/10.1016/j.jff.2019.103771

Ordoñez-Torres, A., Torres-León, C., Hernández-Almanza, A., Flores-Guía, T., Luque-Contreras, D., Aguilar, C.N. y Ascacio-Valdés, J. (2021). Ultrasound-microwave-assisted extraction of polyphenolic compounds from Mexican “Ataulfo”mango peels: Antioxidant potential and identification by HPLC/ESI/MS. Phytochemical Anaysis, 32(4): 495-502. https://doi.org/10.1002/pca.2997

Pehlivan, F.E. (2017). Vitamin C: An Antioxidant agent. En Hamza AH. (ed.) Vitamin C. IntechOpen. http://dx.doi.org/10.5772/intechopen.69660

Peña-Torres, E.F., González-Ríos, H., Avendaño-Reyes, L., Valenzuela-Grijalva, N.V., Pinelli-Saavedra, A., Muhlia-Almazán, A. y Peña-Ramos, E.A. (2019). Ácidos hidroxicinámicos en producción animal: farmacocinética, farmacodinamia y sus efectos como promotor de crecimiento. Revista Mexicana de Ciencias Pecuarias, 10(2): 391-415. https://doi.org/10.22319/rmcp.v10i2.4526

Pereira‐Caro, G., Kay, C.D., Clifford, M.N. y Crozier, A. (2020). Flavanonas. En Tomás-Barberán F.A., González-Sarrías A., García-Villalba R. (eds). Dietary polyphenols: Metabolism and health effects. (First Edition, pp. 439-495). John Wiley & Sons. https://www.wiley.com/ens/Dietary+Polyphenols%3A+Metabolism+and+Health+Effects-p-9781119563723

Pereira-Netto, A.B. (2018). Tropical fruits as natural, exceptionally rich, sources of bioactive compounds. International Journal of Fruit Science, 18(3): 231-242. https://doi.org/10.1080/15538362.2018.1444532

Pfukwa, T.M., Chikwanh, O.C., Katiyatiya, C.L.F., Fawole, O.A., Manley, M. y Mapiye, C. (2020). Southern African indigenous fruits and their byproducts: Prospects as food antioxidants. Journal of Functional Foods, 75: 104220. https://doi.org/10.1016/j.jff.2020.104220

Philipov, S. y Doncheva, T. (2013) Alkaloids Derived from Ornithine: Tropane Alkaloids. En Ramawat K., Mérillon JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_8

Prior, R.L.; Wu, X. y Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10): 4290-4302. https://doi.org/10.1021/jf0502698

Priyadarshini, A. y Priyadarshini, A. (2018). Market dimensions of the fruit juice industry. En Rajauria G, Tiwari BK. (eds). Fruit Juices. Extraction, Composition, Quality and Analysis, pp. 15-32. Academic Press. https://doi.org/10.1016/B978-0-12-802230-6.00002-3

Psomas, G. (2020). Copper (II) and zinc (II) coordination compounds of non-steroidal anti-inflammatory drugs: Structural features and antioxidant activity. Coordination Chemistry Reviews, 412: 213259. https://doi.org/10.1016/j.ccr.2020.213259

Ribeiro, D., Freitas, M., Silva, A.M.S., Carvalho, F. y Fernandes, E. (2020). Antioxidant and pro-oxidant activities of carotenoids. Food and Chemical Toxicology, 120: 681–699. https://doi.org/10.1016/j.fct.2018.07.060

Ribeiro, D., Freitas, M., Silva, A.M.S., Carvalho, F. y Fernandes, E. (2018). Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food and Chemical Toxicology, 120: 681-699. https://doi.org/10.1016/j.fct.2018.07.060

Rodriguez-Amaya, D.B. (2016). Natural food pigments and colorants. Current Opinion in Food Science, 7: 20-26. https://doi.org/10.1016/j.cofs.2015.08.004

Saini, R.K. y Keum, Y.S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240: 90-103. https://doi.org/10.1016/j.foodchem.2017.07.099

Santos-Silva, J., Ortiz, D.W., Garcia, L.G.C., Asquieri, E.R., Becker, F.S. y Damiani, C. (2020). Effect of drying on nutritional composition, antioxidant capacity and bioactive compounds of fruits co-products. Food Science and Technology, 40(4): 810-816. http://dx.doi.org/10.1590/fst.21419

Schomburg, L. (2017). Dietary selenium and human health. Nutrients, 9: 22. https://dx.doi.org/10.3390%2Fnu9010022

Selani, M.M., Bianchini, A., Ratnayake, W.S., Flores, R.A., Massarioli, A.P., de Alencar, S.M. y Canniatti-Brazaca, S.G. (2016). Physicochemical, functional and antioxidant properties of tropical fruits co-products. Plant Foods for Human Nutrition, 71(2), 137-144. https://doi.org/10.1007/s11130-016-0531-z

Septembre-Malaterre, A., Stanislas, G., Douraguia, E. y Gonthier, M.P. (2016). Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Food Chemistry, 212: 225-233. https://doi.org/10.1016/j.foodchem.2016.05.147

Shahidi, F. y Zhong, Y. (2015). Measurement of the antioxidant activity. Journal of Functional Foods, 18: 757-781. https://doi.org/10.1016/j.jff.2015.01.047

Sies, H. (2020). Oxidative stress: concept and some practical aspects. Antioxidants, 9(9): 852. https://doi.org/10.3390/antiox9090852

Sies, H. y Jones, D.P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology, 21(7), 363-383. https://doi.org/10.1038/s41580-020-0230-3

Singh, A., Singh, N.B., Hussain, I. y Singh, H. (2017). Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. Botrytis. Journal of Biotechnology, 262: 11-27. https://doi.org/10.1016/j.jbiotec.2017.09.016

Sirerol, J.A., Rodríguez, M.L., Mena, S., Asensi, M.A., Estrela, J.M. y Ortega, A.L. (2016). Role of natural stilbenes in the prevention of cancer. Oxidative Medicine and Cellular Longevity, Vol. 2016: 3128951. https://doi.org/10.1155/2016/3128951

Siriamornpun, S. y Kaewseejan, N. (2017). Quality, bioactive compounds and antioxidant capacity of selected climacteric fruits with relation to their maturity. Scientia Horticulturae, 221: 33-42. https://doi.org/10.1016/j.scienta.2017.04.020

Soto Leiva, C. (2015). Determinación de la capacidad antioxidante de las espigas de la planta de chía. (Tesis de pregrado). Universidad de Chile. https://repositorio.uchile.cl/handle/2250/137522

Stevanovic, T., Diouf, P.N. y Garcia-Perez, M. (2009). Bioactive polyphenols from healthy diets and forest biomass. Current Nutrition & Food Science, 5(4): 264-295. https://doi.org/10.2174/157340109790218067

Sueishi, Y., Sue, M. y Masamoto, H. (2018). Seasonal variations of oxygen radical scavenging ability in rosemary leaf extract. Food Chemistry 245: 270-274. https://doi.org/10.1016/j.foodchem.2017.10.085

Sy, C., Dangles, O., Borel, P. y Caris-Veyrat, C. (2015). Interactions between carotenoids from marine bacteria and other micronutrients: impact on stability and antioxidant activity. Marine Drugs, 13(11): 7020-7039. https://doi.org/10.3390/md13117020

Tarushi, A., Kakoulidou, C., Raptopoulou, C.P., Psycharis, V., Kessissoglou, D.P., Zoi, I., Papadopoulos, A.N. y Psomas, G. (2017). Zinc complexes of diflunisal: Synthesis, characterization, structure, antioxidant activity, and in vitro and in silico study of the interaction with DNA and albumins. Journal of Inorganic Biochemistry, 170: 85-97. https://doi.org/10.1016/j.jinorgbio.2017.02.010

Tian, X. y Schaich, K.M. (2013). Effects of molecular structure on kinetics and dynamics of the trolox equivalent antioxidant capacity assay with ABTS+•. Journal of Agricultural and Food Chemistry, 61(23): 5511-5519. https://doi.org/10.1021/jf4010725

Torres-León, C., Rojas, R., Serna-Cock, L., Belmares-Cerda, R. y Aguilar, C.N. (2017). Extraction of antioxidants from mango seed kernel: Optimization assisted by microwave. Food and Bioproducts Processing, 105: 188-196. https://doi.org/10.1016/j.fbp.2017.07.005

Traber, M. y Atkinson, J. (2007). Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine, 43(1): 4-15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024

Valencia-Avilés, E., Ignacio-Figueroa, I., Sosa-Martínez, E., Bartolomé-Camacho, M.C., Martínez-Flores, H.E. y García-Pérez, M.E. (2017). Polifenoles: propiedades antioxidantes y toxicológicas. Revista de la Facultad de Ciencias Químicas, 16: 15-29. https://dspace.ucuenca.edu.ec/bitstream/123456789/29781/1/2.%201583-4794-2-PB.pdf

Vázquez-Briones, M.C., Chavez-Reyes, Y. y Mata-García, M. (2019). Frutas tropicales como fuentes de antioxidantes y sus perspectivas en la industria de bebidas. Proceedings-©ECORFAN-México. pp. 68-81. https://www.ecorfan.org/proceedings/Proceedings_Biologia_y_Quimica_TI/Proceedings_Biologia_y_Quimica_TI_7.pdf

Vázquez-Ovando, A., Ovando-Medina, I., Adriano-Anaya, L., Betancur-Ancona, D. y Salvador-Figueroa, M. (2016). Alcaloides y polifenoles del cacao, mecanismos que regulan su biosíntesis y sus implicaciones en el sabor y aroma. Archivos Latinoamericanos de Nutrición, 66(3): 239-254. http://www.alanrevista.org/ediciones/2016/3/art-10

Viglianisi, C. y Menichetti S. (2019). Chain breaking antioxidant activity of heavy (S, Se, Te) chalcogens substituted polyphenols. Antioxidants, 8(10): 487. https://dx.doi.org/10.3390%2Fantiox8100487

Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., Sendra, E., Sayas-Barberá, E. y Pérez-Álvarez, J.A. (2011). Antioxidant properties of pomegranate (Punica granatum L.) bagasses obtained as co-product in the juice extraction. Food Research International, 44(5): 1217-1223. https://doi.org/10.1016/j.foodres.2010.10.057

Wang, L., Xu, X., Su, G., Shi, B. y Shan, A. (2017). High concentration of vitamin E supplementation in sow diet during the last week of gestation and lactation affects the immunological variables and antioxidative parameters in piglets. Journal of Dairy Research, 84(1), 8-13. https://doi.org/10.1017/s0022029916000650

Wilson, D.W., Nash, P., Buttar, H.S., Griffiths, K., Singh, R., De Meester, F., Horiuchi, R. y Takahashi, T. (2017). The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: An Overview. Antioxidants, 6(4): 81. https://doi.org/10.3390/antiox6040081

Wu, X., Beecher, G.R., Holden, J.M., Haytowitz, D.B., Gebhardt, S.E. y Prior, R.L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural and Food Chemistry, 52(12), 4026-4037. https://doi.org/10.1021/jf049696w

Xu, C., Qiao, L., Guo, Y., Ma, L. y Cheng, Y. (2018). Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydrate Polymers, 195, 576-585. https://doi.org/10.1016/j.carbpol.2018.04.110

Yang, C., Fischer, M., Kirby, C., Liu, R., Zhu, H., Zhang, H., Chen, Y., Sun, Y., Zhang, L. y Tsao, R. (2018). Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities. Food Chemistry, 249, 66-76. https://doi.org/10.1016/j.foodchem.2017.12.055

Yepes-Betancur, D.P., Márquez-Cardozo, C.J., Cadena-Chamorro, E.M., Martinez-Saldarriaga, J., Torres-León, C., Ascacio-Valdes, A. y Aguilar, C.N. (2021). Solid-state fermentation–assisted extraction of bioactive compounds from hass avocado sedes. Food and Bioproducts Processing, 126: 155-163. https://dx.doi.org/10.1016/j.fbp.2020.10.012

Yin, Y., Zheng, Z. y Jiang, Z. (2019). Effects of lycopene on metabolism of glycolipid in type 2 diabetic rats. Biomedicine and Pharmacotherapy, 109: 2070-2077. http://dx.doi.org/10.1016/j.biopha.2018.07.100

Young, A. y Lowe, G. (2018). Carotenoids—Antioxidant Properties. Antioxidants, 7(2): 28. https://dx.doi.org/10.3390%2Fantiox7020028

Yu J, Bi X, Yu B, Chen D. 2016. Isoflavones: anti-inflammatory benefit and possible warnings. Nutrientes, 8(6): 361. https://dx.doi.org/10.3390%2Fnu8060361

Yunping, Y., Di, Z., Ruiting, L., Hang, Z., Wentao, L., Changmo, L. y Shuo, W. (2020). Zeaxanthin in soybean oil: impact of oxidative stability. degradation pattern, and product analysis. Journal of Agricultural and Food Chemistry, 68(17): 4981-4990. https://doi.org/10.1021/acs.jafc.9b07480

Zhang, B., Cai, J., Duan, C.Q., Reeves, M.J. y He, F. (2015). A review of polyphenolics in oak woods. International Journal of Molecular Sciences, 16(4): 6978-7014. https://doi.org/10.3390/ijms16046978

Zhao, L., Yuan, X., Wang, J., Feng, Y., Ji, F., Li, Z. y Bian, J. (2019). A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorganic & Medicinal Chemistry, 27: 667-685. https://doi.org/10.1016/j.bmc.2019.01.027

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.