Trichoderma strains selection for biological control of Fusarium nygamai in sorghum (Sorghum bicolor L. Moench)
PDF (Español (España))
XML (Español (España))

Keywords

biocontrol agent
phytopathogen
mycotoxins
crops
Trichoderma
Fusarium agente de biocontrol
fitopatógeno
micotoxinas
cultivos
Trichoderma
Fusarium

How to Cite

Corallo Fabiano, A. B., Bettucci Rossi, L. J., & Tiscornia Córdoba, S. M. (2021). Trichoderma strains selection for biological control of Fusarium nygamai in sorghum (Sorghum bicolor L. Moench). Revista Colombiana De Investigaciones Agroindustriales, 8(1), 11–22. https://doi.org/10.23850/24220582.4064

Abstract

Uno de los principales problemas que afectan el cultivo de sorgo (Sorghum bicolor) en Uruguay es la enfermedad ocasionada por Fusarium nygamai, responsable de pérdidas en el rendimiento en los cultivos. Además, es capaz de producir micotoxinas como fumonicina, moniliformina y beauvericina, lo que constituye un riesgo para la alimentación animal. El objetivo de este trabajo fue identificar cepas de Trichoderma spp., con potencial de control de F. nygamai en sorgo. Se identificaron dos cepas de Trichoderma asperellum, cinco cepas de Trichoderma atroviride, dos cepas de Trichoderma virens, una cepa de Trichoderma longibrachiatum y dos cepas de Trichoderma sp. aisladas de suelo en plantaciones comerciales de sorgo. Se realizaron cultivos duales y evaluación de metabolitos volátiles in vitro para seleccionar las cepas con la mayor actividad antagonista contra F. nygamai. Las cepas de Trichoderma spp. seleccionadas se evaluaron en ensayos de protección vegetal en plántulas de sorgo inoculadas con F. nygamai. T. asperellum (T6) y T. atroviride (T21) fueron antagonistas efectivos de F. nygamai. Todas las plántulas de sorgo inoculadas con F. nygamai mostraron síntomas de la enfermedad, mientras que el 50% de las plántulas inoculadas con F. nygamai pero tratadas con T. asperellum (T6) permanecieron sanas, recuperando la cepa de los tejidos internos de la raíz, el tallo y las hojas. Estos resultados son promisorios para el desarrollo de una formulación comercial de tratamiento de semillas para el control de F. nygamai en cultivos de sorgo.

https://doi.org/10.23850/24220582.4064
PDF (Español (España))
XML (Español (España))

References

Al-Mekhlafi, N. A.; Abdullah, Q. Y.; Al-Helali, M.F.; Alghalibi, S.M. (2019). Efficacy of native Trichoderma spp. in controlling Fusarium wilt of tomato plants in green house, Yemen. CBMI 4(1):1-6.

Ben Amira, M.; Lopez, D.; Mohamed, A.T.; Khouaja, A.; Chaar, H.; Fumanal, B.; et al. (2017). Beneficial effect of Trichoderma harzianum strain Ths97 in biocontrolling Fusarium solani causal agent of root rot disease in olive trees. Biological Control 110: 70-78. https://doi.org/10.1016/j.biocontrol.2017.04.008

Coninck, E.; Scauflaire, J.; Gollier, M.; Liénard, C.; Foucart, G.; Manssens, G.; Munaut, F.; Legrève, A. (2020). Trichoderma atroviride as a promising biocontrol agent in seed coating for reducing Fusarium damping‐off on maize. Journal of Applied Microbiology. doi:10.1111/jam.14641

Contreras-Cornejo HA.; Macías-Rodríguez L.; del-Val E.; Larsen J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol. 92(4):fiw036. doi: 10.1093/femsec/fiw036.

Daguerre, Y.; Edel-Hermann, V.; Steinberg, C. (2017). Fungal genes and metabolites associated with the biocontrol of soil-borne plant pathogenic fungi. In: Mérillon JM, Ramawat K (eds.). Fungal Metabolites. Reference Series in Phytochemistry. Cham, Switzerland: Springer 33-104. https://doi.org/0.1007/978-3-319-25001-4_27

del Palacio, A.; Mionetto, A.; Bettucci, L.; Pan, D. (2016). Evolution of fungal population and mycotoxins in sorghum silage. Food Additives Contaminant 33:1864-1872. https://doi.org/10.1080/19440049.2016.1244732

Dennis, C.; Webster, J. (1971). Antagonistic properties of species groups of Trichoderma II. Production of non-volatile antibiotics. Transactions of British Mycological Society 57:41-48.

Fox, E.; Shotton, K.; Ulrich, C. (1995). SigmaStat statistical software, version 3.5 user´s manual. Jandel Scientific Co. (CD). San Rafael, California, USA.

Glenn, A.E. (2007). Mycotoxigenic Fusarium species in animal feed. Animal Feed Science and Technology 137:213-240. https://doi.org/10.1016/j.anifeedsci.2007.06.003

Hussien, T.; Carlobos-Lopez, A.L.; Cumagun, C.; Yli-Mattila T. (2017). Identification and quantification of fumonisin-producing Fusarium species in grain and soil samples from Egypt and the Philippines. Phytopathologia Mediterranea 56 (1): 146-153. https://doi.org/10.14601/Phytopathol_Mediterr-20294

Imran, A.; Arif, M.; Shah, Z.; Bari A. (2020). Soil application of Trichoderma and peach (Prunus persica L.) residues possesses biocontrol potential for weeds and enhances growth and profitability of soybean (Glycine max). Sarhad Journal Agricultural 36: 10-20. https://doi.org/10.17582/journal.sja/2020/36.1.10.20

Infante, D.; Martínez, B.; González, N., & Reyes, Y. (2009). Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Rev. Protección Veg., 24(1), 14-21.

Intana, W.; Kheawleng, S.; Sunpapao, A. (2021). Trichoderma asperellum T76-14 released volatile organic compounds against postharvest fruit rot in muskmelons (Cucumis melo) caused by Fusarium incarnatum. Journal of Fungi 7 (1), 46. https://doi.org/10.3390/jof7010046

Köhl, J.; Kolnaar, R.; Ravensberg, W.J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Science 10: 845. https://doi.org/10.3389/fpls.2019.00845

Lee, S.; Taylor, J. (1990). Isolation of DNA from fungal mycelia and single spores. In: Innis MA, Gelfand DH, Snindky JJ, WhiteTJ (eds.). PCR protocols: a guide to methods and applications. San Diego, California, USA: Academic Press. 282-287. http://dx.doi.org/10.1016/b978-0-12-372180-8.50038-x

Li, M-F; Li, G-H; Zhang, K-Q. (2019). Non-volatile metabolites from Trichoderma spp. Metabolites 9(3):58. https://doi.org/10.3390/metabo9030058

Logrieco, A.; Mulè, G.; Moretti, A.; Bottalico, A. (2002). Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. European Journal of Plant Pathology 108:597-609. https://doi.org/10.1023/A:1020679029993

Martínez-Coca, B.; Infante, D.; Caraballo, W.; Duarte-Leal, Y.; Echevarría-Hernández, A. (2018). Antagonism of strains of Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg against isolates of Fusarium spp. from chickpea. Revista de Protección Vegetal 33(2):2224-4697

Metcalf, D.D.; Wilson, C.C. (2001). The process of antagonism of Sclerotium cepivorum in white rot affected onion roots by Trichoderma koningii. Plant Pathology 50:249-257. https://doi.org/10.1046/j.1365-3059.2001.00549.x

Nawrocka, J.; Małolepsza, U.; Szymczak, K.; Szczech, M. (2018). Involvement of metabolic components, volatile compounds, PR proteins, and mechanical strengthening in multilayer protection of cucumber plants against Rhizoctonia solani activated by Trichoderma atroviride TRS25. Protoplasma. Jan;255(1):359-373. doi: 10.1007/s00709-017-1157-1.

O´Donnell, K.; Cigelnik, E. (1997). Two divergent intragenomics rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7:103-116. https://doi.org/10.1006/mpev.1996.0376

OPYPA. 2020. Anuario 2020. Oficina de Programación y Política Agropecuaria. Ministerio de Ganadería, Agricultura y Pesca, Montevideo, Uruguay.

Parizi, T.E.; Ansaria, M.; Elaminejad, T. (2012). Evaluation of the potential of Trichoderma viride in the control of fungal pathogens of Roselle (Hibiscus sabdariffa L.) in vitro. Microbial Pathogen 52(4): 201-205. http://dx.doi.org/10.1016/j.micpath.2012.01.001

Pascale, A.; Vinale, F; Manganiello, G.; Nigro, M.; Lanzuise, S.; Ruocco, M.; et al. (2017). Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection 92: 176-181. https://doi.org/10.1016/j.cropro.2016.11.010

Petrovic, T.; Walsh, J.L.; Burgess, L.W.; Summerell, B.A. (2009). Fusarium species associated with stalk rot of grain sorghum in the northern grain belt of eastern Australia. Australasian Plant Pathology 38:373-379. https://doi.org/10.1071/AP09011

Rao, P.S.; Vinutha, K.S; Kumar, G.S.A.; Chiranjeevi, T.; Uma, A.; Lal, et al. (2016). Sorghum: a multipurpose bioenergy crop. In: Ciampitti I, Prasad V (Eds.). Sorghum: State of the Art and Future Perspectives. Madison, Wisconsin, USA: American Society of Agronomy and Crop Science Society of America, Inc. https://doi.org/10.2134/agronmonogr58.2014.0074

Reddy, S.P. Sorghum, Sorghum bicolor (L.) Moench. (2017). In: Patil J.V. (Ed.). Millets and Sorghum: Biology and Genetic Improvement. New Jersey, USA: John Wiley and Sons, Hoboken. p. 1-48. https://doi.org/10.1002/ 9781119130765.ch1

Reino, J.L.; Guerrero, R.F.; Hernández-Galán, R.; Collado, I.G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Review 7:89-123. 10.1007/s11101-006-9032-2

Samuels, G.J. (2006). Trichoderma: Systematics, the sexual state and ecology. Phytopathology 96: 195-206. http://dx.doi.org/10.1094/PHYTO-96-0195

Saravanakumar, K.; Li, Y.; Yu, C.; Wang, Q.Q.; Wang, M.; Sun, J.; et al. (2017). Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium stalk rot. Scientific Reports 7:1771. doi: 10.1038/s41598-017-01680-w

Tamura, K.; O´Donnell, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30(12):2725-2729

Thompson, J.D.; Higgins, D.G.; Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673-4680.

White, T.J.; Burns, T.; Lee, S.; Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Snindky J.J., White T.J. (Eds.). PCR protocols: a guide to methods and applications. New York, USA: Academic Press. 315-322.

Win, T.T.; Bo, B.; Malec, P., Khan, S.; Fu, P. (2021). Newly isolated strain of Trichoderma asperellum from disease suppressive soil is a potential bio-control agent to suppress Fusarium soil borne fungal phytopathogens. Journal of Plant Pathology 103, 549–561 https://doi.org/10.1007/s42161-021-00780-x

Yaqub, F.; Shahzad, S. (2008). Effect of seed pelleting with Trichoderma spp., and Gliocladium virens on growth and colonization of roots of sunflower and mungbean by Sclerotium rolfsii. Pakistan. Journal of Botany. 40 (2): 947–963

Zin, N.A.; Badaluddin, N.A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Science 65 (2): 168-178. https://doi.org/10.1016/j.aoas.2020.09.003.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloads

Download data is not yet available.