Reciclaje de residuos de cuero: una revisión de estudios experimentales
PDF
HTML
PDF (English)
XML
XML (English)

Palabras clave

procesamiento del cuero
carnaza
curtido
reciclaje de residuos sólidos.

Cómo citar

Velásquez Restrepo, S. M., Giraldo Vásquez, D. H., & Cardona Vásquez, N. (2015). Reciclaje de residuos de cuero: una revisión de estudios experimentales. Informador Técnico, 79(2), 188–198. https://doi.org/10.23850/22565035.163

Resumen

El curtido del cuero convierte las pieles naturales en materiales flexibles, imputrescibles y duraderos, mediante complejos procesos que generan cantidades significativas de residuos que representan un problema ambiental si no se gestionan adecuadamente. Se presenta una revisión de la literatura sobre la reutilización de residuos sólidos procedentes de las operaciones de procesamiento del cuero. Se encontraron cuatro renglones de investigación ampliamente reportados; en primer lugar, la pirólisis de los residuos para la obtención de combustibles sólidos alternativos y para la síntesis de materiales carbonosos con propiedades multifuncionales, con potencial para el secuestro de dióxido de carbono y para la adsorción de tintes en soluciones acuosas. Los otros tres renglones identificados son la obtención de biodiesel mediante transesterificación, la modificación de asfaltos y el uso de residuos de cuero como material reforzante en mezclas de caucho. La revisión de la literatura indicó que es posible disminuir el impacto ambiental de la industria del cuero, no sólo mediante el tratamiento de efluentes, que ha sido la temática más estudiada, sino tratando los residuos sólidos que se generan durante el curtido para obtener nuevos y valiosos productos.
https://doi.org/10.23850/22565035.163
PDF
HTML
PDF (English)
XML
XML (English)

Citas

Alptekin, E., y Canakci, M. (2010). Optimization of pretreatment reaction for methyl ester production from chicken fat. Fuel, 89(12), 4035-4039.

https://doi.org/10.1016/j.fuel.2010.04.031

Alptekin, E., Canakci, M., y Sanli, H. (2012). Evaluation of leather industry wastes as a feedstock for biodiesel production. Fuel, 95, 214-220.

https://doi.org/10.1016/j.fuel.2011.08.055

Alzate, A. (2008). Proyecto Gestión Ambiental en la industria de Curtiembre en Colombia. Diagnóstico y estrategias. Recuperado de: http://www.tecnologiaslimpias.org/Curtiembres/EstrategiasDiagnostico.pdf.

Ambrósio, J., Lucas, A., Otaguro, H., y Costa, L. (2011). Preparation and characterization of poly (vinyl butyral)-leather fiber composites. Polymer Composites, 32(5), 776- 785.

https://doi.org/10.1002/pc.21099

Aranda, C., y Clavijo, C. (2014). Análisis del comportamiento físico-mecánico de una mezcla densa en caliente tipo MDC-2 modificada con caucho y cuero en porcentajes 25% y 75% respectivamente (tesis de pregrado). Facultad de Ingeniería, Universidad Católica de Colombia, Bogotá, Colombia.

Ashokkumar, M., Narayanan, N., Reddy, A., Gupta, B., Chandrasekaran, B., Talapatra, S., y Thanikaivelan, P. (2012). Transforming collagen wastes into doped nanocarbons for sustainable energy applications. Green Chemistry, 14(6), 1689-1695.

https://doi.org/10.1039/c2gc35262a

Barbosa, D., Serra, T., Meneghetti, S., y Meneghetti, M. (2010). Biodiesel production by ethanolysis of mixed castor and soybean oils. Fuel, 89(12), 3791-3794.

https://doi.org/10.1016/j.fuel.2010.07.016

Barinas, B., y Manotas, M. (2012). Caracterización de mezclas asfálticas tipo 2 (mdc-2) en caliente, modificadas con desechos de cauchocuero y caucho molido de llanta. Ingen Infraestructura, 155, 3.

Beghetto, V., Zancanaro, A., Scrivanti, A., Matteoli, U., Pozza, G. (2013). The Leather Industry: A Chemistry Insight. Part I: an Overview of the Industrial Process. Sciences At Ca' Foscari, 1(1), pp. 13-22

Bermúdez, J., Dominguez, P., Arenillas, A., Cot, J., Weber, J., y Luque, R. (2013). CO2 separation and capture properties of porous carbonaceous materials from leather residues. Materials, 6(10), 4641-4653.

https://doi.org/10.3390/ma6104641

Cabeza, L., Taylor, M., DiMaio, G., Brown, E., Marmer, W., Carrio, R., y Cot, J. (1998). Processing of leather waste: pilot scale studies on chrome shavings. Isolation of potentially valuable protein products and chromium. Waste Management, 18(3), 211-218.

https://doi.org/10.1016/S0956-053X(98)00032-4

Canakci, M. (2007). The potential of restaurant waste lipids as biodiesel feedstocks. Bioresource Technology, 98(1), 183-190.

https://doi.org/10.1016/j.biortech.2005.11.022

Catalina, M., Cot, J., Balu, A. M., Serrano-Ruiz, J. C., y Luque, R. (2012). Tailor-made biopolymers from leather waste valorisation. Green Chemistry,14(2), 308-312.

https://doi.org/10.1039/c2gc16330f

Catalina, M., Cot, J., Borras, M., Lapuente, J., González, J., Balu, A., y Luque, R. (2013). From waste to healing biopolymers: biomedical applications of bio-collagenic materials extracted from industrial leather residues in wound healing. Materials, 6(5), 1599-1607.

https://doi.org/10.3390/ma6051599

Chronska, K., y Przepiorkowska, A. (2008). Buffing dust as a filler of carboxylated butadieneacrylonitrile rubber and butadieneacrylonitrile rubber. Journal of hazardous materials, 151(2), 348-355.

https://doi.org/10.1016/j.jhazmat.2007.05.087

Cooman, K., Gajardo, M., Nieto, J., Bornhardt, C., y Vidal, G. (2003). Tannery wastewater characterization and toxicity effects on Daphnia spp. Environmental toxicology, 18(1), 45-51.

https://doi.org/10.1002/tox.10094

DNP - Dirección Nacional de Planeación. (2014). Bases del Plan Nacional de Desarrollo 2014- 2018. Recuperado de: https://colaboracion.dnp.gov.co/CDT/Prensa/PND%202014-2018%20Bases%20Final.pdf

D'Alessandro, D., Smit, B., y Long, J. (2010). Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition, 49(35), 6058-6082.

https://doi.org/10.1002/anie.201000431

Dixit, S., Yadav, A., Dwivedi, P., y Das, M. (2015). Toxic hazards of leather industry and technologies to combat threat: A review. Journal of Cleaner Production, 87, 39-49.

https://doi.org/10.1016/j.jclepro.2014.10.017

El-Sabbagh, S., y Mohamed, O. (2011). Recycling of chrome-tanned leather waste in acrylonitrile butadiene rubber. Journal of Applied Polymer Science, 121(2), 979-988.

https://doi.org/10.1002/app.33692

Encinar, J., Sánchez, N., Martínez, G., y García, L. (2011). Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology, 102(23), 10907-10914.

https://doi.org/10.1016/j.biortech.2011.09.068

Endalew, A., Kiros, Y., y Zanzi, R. (2011). Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass and bioenergy,35(9), 3787-3809.

https://doi.org/10.1016/j.biombioe.2011.06.011

Fabbricino, M., Naviglio, B., Tortora, G., y d'Antonio, L. (2013). An environmental friendly cycle for Cr (III) removal and recovery from tannery wastewater. Journal of environmental management, 117, 1-6.

https://doi.org/10.1016/j.jenvman.2012.12.012

Fanun, M. (Ed.). (2014). The Role of Colloidal Systems in Environmental Protection: Effective Utilization of Solid Waste from Leather Industry. Elsevier. Pages 593-613

https://doi.org/10.1016/B978-0-444-63283-8.00023-5

Fathima, N., Aravindhan, R., Rao, J., y Nair, B. (2009). Utilization of organically stabilized proteinous solid waste for the treatment of coloured waste-water. Journal of chemical technology and biotechnology, 84(9), 1338-1343.

https://doi.org/10.1002/jctb.2186

Fathima, N., Aravindhan, R., Rao, J., y Nair, B. (2011). Stabilized protein waste as a source for removal of color from wastewaters. Journal of applied polymer science, 120(3), 1397-1402.

https://doi.org/10.1002/app.32884

Font, R., Caballero, J., Esperanza, M., Fullana, A. (1999). Pyrolytic products from tannery wastes. Journal of Analytical and Applied Pyrolysis, 49, 243-56.

https://doi.org/10.1016/S0165-2370(98)00117-X

Girgis, B., Ishak, M. (1999). Activated carbon from cotton stalks by impregnation with phosphoric acid. Materials Letters, 39(2), 107- 114.

https://doi.org/10.1016/S0167-577X(98)00225-0

Gupta, V. (2009). Application of low-cost adsorbents for dye removal - A review. Journal of environmental management, 90(8), 2313-2342.

https://doi.org/10.1016/j.jenvman.2008.11.017

Gutiérrez, D., Vivas, S., Moreno, L. (2014). Evaluación de las propiedades mecánicas de una mezcla asfáltica densa en caliente tipo 2 MDC-2 elaborada con asfalto modificado con caucho vulcanizado de suela de bota militar (tesis de pregrado). Facultad de Ingeniería, Universidad Católica de Colombia, Bogotá, Colombia.

Haas, M., y Foglia, T. (2005). Alternate feedstocks and technologies for biodiesel production. The biodiesel handbook, 42-61.

https://doi.org/10.1201/9781439822357.ch4.2

Hayashi, J., Horikawa, T., Takeda, I., Muroyama, K., Nasir, F. (2002). Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon, 40(13), 2381-2386.

https://doi.org/10.1016/S0008-6223(02)00118-5

Islam, B., Musa, A., Ibrahim, E., Sharafa, S., y Elfaki, B. (2014). Evaluation and Characterization of Tannery Wastewater. Journal of forest products and Industries, 3 (3), 141-150.

Kanagaraj, J., Senthivelan, T., Panda, R., y Kavitha, S. (2015). Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: A comprehensive review. Journal of Cleaner Production, 89, 1-17.

https://doi.org/10.1016/j.jclepro.2014.11.013

Kantarli, I., y Yanik, J. (2010). Activated carbon from leather shaving wastes and its application in removal of toxic materials. Journal of hazardous materials,179(1), 348-356.

https://doi.org/10.1016/j.jhazmat.2010.03.012

Kolomazník, K., Barinova, M., y Fuerst, T. (2009). Possibility of using tannery waste for biodiesel production. The Journal of the American Leather Chemists Association, 104(5), 177-182.

Koutinas, A.; Kopsahelis, N.; Stamatelou, K.; Dickson, F.; et al. (2012). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 6, 426-464.

Lefebvre, O., Vasudevan, N., Torrijos, M., Thanasekaran, K., y Moletta, R. (2006). Anaerobic digestion of tannery soak liquor with an aerobic post-treatment. Water research, 40(7), 1492-1500.

https://doi.org/10.1016/j.watres.2006.02.004

Leta, S., Assefa, F., Gumaelius, L., y Dalhammar, G. (2004). Biological nitrogen and organic matter removal from tannery wastewater in pilot plant operations in Ethiopia. Applied microbiology and biotechnology, 66(3), 333-339.

https://doi.org/10.1007/s00253-004-1715-2

Lin, C., Pfaltzgraff, L., Herrero-Davila, L., Mubofu, E., Solhy, A., Clark, J., Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy and Environmental Science, 6(2), 426- 464.

https://doi.org/10.1039/c2ee23440h

Lofrano, G., Meriç, S., Zengin, G., y Orhon, D. (2013). Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Science of The Total Environment, 461, 265-281.

https://doi.org/10.1016/j.scitotenv.2013.05.004

Lua, A., Yang, T., y Guo, J. (2004). Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachionut shells. Journal of analytical and applied pyrolysis, 72(2), 279-287.

https://doi.org/10.1016/j.jaap.2004.08.001

Mannucci, A., Munz, G., Mori, G., y Lubello, C. (2010). Anaerobic treatment of vegetable tannery wastewaters: a review. Desalination, 264(1), 1-8.

https://doi.org/10.1016/j.desal.2010.07.021

Marshall Cavendish Corporation Staff (Ed.). (2003). How It Works: Science and Technology. Marshall Cavendish.

Menjura, C. (2014). Características mecánicas de una mezcla MDC-2 con adición de caucho y cuero de bota militar. V Congreso Internacional de Ingeniería Civil, Tunja, Colombia.

Moreno, L., y Calvo, D. (2014). Estudio mecánico del asfalto modificado con polímeros y cueros que son utilizados en la elaboración del calzado. V Congreso Internacional de Ingeniería Civil, Tunja, Colombia.

Natchimuthu, N., Radhakrishnan, G., Palanivel, K., Ramamurthy, K., y Anand, J. S. (1994). Vulcanization characteristics and mechanical properties of nitrile rubber filled with short leather fibres. Polymer international, 33 (3), 329-333.

https://doi.org/10.1002/pi.1994.210330313

NPCS - NIIR Project Consultancy Services. (2005). Leather processing and taining technology handbook. India, National Institute of industrial research.

Oliveira, L., Guerreiro, M., Gonçalves, M., Oliveira, D., y Costa, L. (2008). Preparation of activated carbon from leather waste: a new material containing small particle of chromium oxide. Materials Letters, 62(21), 3710-3712.

https://doi.org/10.1016/j.matlet.2008.04.064

Oliveira, L., Goncalves, M., Oliveira, D., Guerreiro, M., Guilherme, L., y Dallago, R. (2007). Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium. Journal of hazardous materials, 141(1), 344-347.

https://doi.org/10.1016/j.jhazmat.2006.06.111

Orhon, D., Genceli, E., y Çokgör, E. (1999). Characterization and modeling of activated sludge for tannery wastewater. Water environment research, 50-63.

https://doi.org/10.2175/106143099X121508

Özgünay, H., Çolak, S., Zengin, G., Sari, Ö., Sarikahya, H., y Yüceer, L. (2007). Performance and emission study of biodiesel from leather industry pre-fleshings. Waste Management, 27(12), 1897-1901.

https://doi.org/10.1016/j.wasman.2006.08.014

Piccin, J., Gomes, C., Feris, L., y Gutterres, M. (2012). Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chemical Engineering Journal, 183, 30-38.

https://doi.org/10.1016/j.cej.2011.12.013

Przepiorkowska, A., Chronska, K., y Zaborski, M. (2007). Chrome-tanned leather shavings as a filler of butadiene-acrylonitrile rubber. Journal of hazardous materials, 141(1), 252-257.

https://doi.org/10.1016/j.jhazmat.2006.06.136

Przepiorkowska, A., Prochon, M., y Zaborski, M. (2004). Use of waste collagen as filler for rubber compounds. Journal of the society of leather technologists and chemists, 88(6), 223.

Rajesh Banu, J., y Kaliappan, S. (2007). Treatment of tannery wastewater using hybrid upflow anaerobic sludge blanket reactor. Journal of Environmental Engineering and Science, 6(4), 415-421.

https://doi.org/10.1139/s06-063

Ramaraj, B. (2006). Mechanical and thermal properties of ABS and leather waste composites. Journal of applied polymer science, 101(5), 3062-3066.

https://doi.org/10.1002/app.24113

Rao, J. R., Thanikaivelan, P., Sreeram, K. J., y Nair, B. U. (2002). Green route for the utilization of chrome shavings (chromium-containing solid waste) in tanning industry. Environmental science y technology, 36(6), 1372-1376.

https://doi.org/10.1021/es015635s

Ravichandran, K., y Natchimuthu, N. (2005). Natural rubber - leather composites. Polímeros, 15(2), 102-108

https://doi.org/10.1590/S0104-14282005000200008

Ravichandran, K., y Natchimuthu, N. (2005). Vulcanization characteristics and mechanical properties of natural rubber-scrap rubber compositions filled with leather particles. Polymer international, 54(3), 553-559.

https://doi.org/10.1002/pi.1725

Reyes, U., y Pinzón, J. (2013). Asfaltos modificados con caucho y cuero de bota militar (tesis de pregrado). Facultad de Ingeniería, Universidad Católica de Colombia, Bogotá, Colombia.

Rodríguez, G., y Téllez, G. (2013). Caracterización física de asfalto modificado con cuero de calzado (tesis de pregrado). Facultad de Ingeniería, Universidad Católica de Colombia, Bogotá, Colombia.

San Miguel, G., Fowler, G., y Sollars, C. (2003). A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber. Carbon, 41(5), 1009-1016.

https://doi.org/10.1016/S0008-6223(02)00449-9

Silitonga, A., Masjukia H., Mahliac, T., Onga, H., Chonga, W., Boosroh, M. (2013). Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renewable and Sustainable Energy Reviews, 22, 346-360

https://doi.org/10.1016/j.rser.2013.01.055

Shabani, I., Arani, A., Dakhel, H., e Iranmehr, G. (2009). Using of leather fibers as an additive in elastomeric compounds: Its effect on curing behavior and physico-mechanical properties. Journal of applied polymer science, 111(4), 1670-1675.

https://doi.org/10.1002/app.29159

Suganthi, V., Mahalakshmi, M., y Balasubramanian, N. (2013). Development of hybrid membrane bioreactor for tannery effluent treatment. Desalination, 309, 231-236.

https://doi.org/10.1016/j.desal.2012.10.014

Thanikaivelan, P. (abril de 2014). Transformation of Leather Industry Bio-Wastes into High-Value Multifunctional Materials. En: International and Interuniversity Center for Nanoscience and Nanotechnology (IIUCNN). Third International Conference on Recycling and Reuse of Materials. Kerala, India.

Viveros, C. y J. González. (2012). Estudio del comportamiento de mezclas densas en caliente tipo 2 (MDC -2) empleando asfaltos modificados con caucho, (tesis de pregrado). Facultad de Ingeniería, Universidad Católica de Colombia, Bogotá, Colombia.

Yilmaz, O., Cem Kantarli, I., Yuksel, M., Saglam, M., y Yanik, J. (2007). Conversion of leather wastes to useful products. Resources, conservation and recycling, 49(4), 436-448.

https://doi.org/10.1016/j.resconrec.2006.05.006

Descargas

Los datos de descargas todavía no están disponibles.