Informador Técnico
ISSN: 2256-5035 (Electrónico)
ISSN: 0122-056X (Impreso)
Formato: Electrónico / Acceso Abierto
Frecuencia: Números Semestrales
Revisión por Pares: Doble Ciego
Alptekin, E., y Canakci, M. (2010). Optimization of pretreatment reaction for methyl ester production from chicken fat. Fuel, 89(12), 4035-4039.
https://doi.org/10.1016/j.fuel.2010.04.031
Alptekin, E., Canakci, M., y Sanli, H. (2012). Evaluation of leather industry wastes as a feedstock for biodiesel production. Fuel, 95, 214-220.
https://doi.org/10.1016/j.fuel.2011.08.055
Alzate, A. (2008). Proyecto Gestión Ambiental en la industria de Curtiembre en Colombia. Diagnóstico y estrategias. Recuperado de: http://www.tecnologiaslimpias.org/Curtiembres/EstrategiasDiagnostico.pdf.
Ambrósio, J., Lucas, A., Otaguro, H., y Costa, L. (2011). Preparation and characterization of poly (vinyl butyral)-leather fiber composites. Polymer Composites, 32(5), 776- 785.
https://doi.org/10.1002/pc.21099
Aranda, C., y Clavijo, C. (2014). Análisis del comportamiento físico-mecánico de una mezcla densa en caliente tipo MDC-2 modificada con caucho y cuero en porcentajes 25% y 75% respectivamente (tesis de pregrado). Facultad de Ingeniería, Universidad Católica de Colombia, Bogotá, Colombia.
Ashokkumar, M., Narayanan, N., Reddy, A., Gupta, B., Chandrasekaran, B., Talapatra, S., y Thanikaivelan, P. (2012). Transforming collagen wastes into doped nanocarbons for sustainable energy applications. Green Chemistry, 14(6), 1689-1695.
https://doi.org/10.1039/c2gc35262a
Barbosa, D., Serra, T., Meneghetti, S., y Meneghetti, M. (2010). Biodiesel production by ethanolysis of mixed castor and soybean oils. Fuel, 89(12), 3791-3794.
https://doi.org/10.1016/j.fuel.2010.07.016
Barinas, B., y Manotas, M. (2012). Caracterización de mezclas asfálticas tipo 2 (mdc-2) en caliente, modificadas con desechos de cauchocuero y caucho molido de llanta. Ingen Infraestructura, 155, 3.
Beghetto, V., Zancanaro, A., Scrivanti, A., Matteoli, U., Pozza, G. (2013). The Leather Industry: A Chemistry Insight. Part I: an Overview of the Industrial Process. Sciences At Ca' Foscari, 1(1), pp. 13-22
Bermúdez, J., Dominguez, P., Arenillas, A., Cot, J., Weber, J., y Luque, R. (2013). CO2 separation and capture properties of porous carbonaceous materials from leather residues. Materials, 6(10), 4641-4653.
https://doi.org/10.3390/ma6104641
Cabeza, L., Taylor, M., DiMaio, G., Brown, E., Marmer, W., Carrio, R., y Cot, J. (1998). Processing of leather waste: pilot scale studies on chrome shavings. Isolation of potentially valuable protein products and chromium. Waste Management, 18(3), 211-218.
https://doi.org/10.1016/S0956-053X(98)00032-4
Canakci, M. (2007). The potential of restaurant waste lipids as biodiesel feedstocks. Bioresource Technology, 98(1), 183-190.
https://doi.org/10.1016/j.biortech.2005.11.022
Catalina, M., Cot, J., Balu, A. M., Serrano-Ruiz, J. C., y Luque, R. (2012). Tailor-made biopolymers from leather waste valorisation. Green Chemistry,14(2), 308-312.
https://doi.org/10.1039/c2gc16330f
Catalina, M., Cot, J., Borras, M., Lapuente, J., González, J., Balu, A., y Luque, R. (2013). From waste to healing biopolymers: biomedical applications of bio-collagenic materials extracted from industrial leather residues in wound healing. Materials, 6(5), 1599-1607.
https://doi.org/10.3390/ma6051599
Chronska, K., y Przepiorkowska, A. (2008). Buffing dust as a filler of carboxylated butadieneacrylonitrile rubber and butadieneacrylonitrile rubber. Journal of hazardous materials, 151(2), 348-355.
https://doi.org/10.1016/j.jhazmat.2007.05.087
Cooman, K., Gajardo, M., Nieto, J., Bornhardt, C., y Vidal, G. (2003). Tannery wastewater characterization and toxicity effects on Daphnia spp. Environmental toxicology, 18(1), 45-51.
https://doi.org/10.1002/tox.10094
DNP - Dirección Nacional de Planeación. (2014). Bases del Plan Nacional de Desarrollo 2014- 2018. Recuperado de: https://colaboracion.dnp.gov.co/CDT/Prensa/PND%202014-2018%20Bases%20Final.pdf
D'Alessandro, D., Smit, B., y Long, J. (2010). Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition, 49(35), 6058-6082.
https://doi.org/10.1002/anie.201000431
Dixit, S., Yadav, A., Dwivedi, P., y Das, M. (2015). Toxic hazards of leather industry and technologies to combat threat: A review. Journal of Cleaner Production, 87, 39-49.
https://doi.org/10.1016/j.jclepro.2014.10.017
El-Sabbagh, S., y Mohamed, O. (2011). Recycling of chrome-tanned leather waste in acrylonitrile butadiene rubber. Journal of Applied Polymer Science, 121(2), 979-988.
https://doi.org/10.1002/app.33692
Encinar, J., Sánchez, N., Martínez, G., y García, L. (2011). Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology, 102(23), 10907-10914.
https://doi.org/10.1016/j.biortech.2011.09.068
Endalew, A., Kiros, Y., y Zanzi, R. (2011). Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass and bioenergy,35(9), 3787-3809.
https://doi.org/10.1016/j.biombioe.2011.06.011
Fabbricino, M., Naviglio, B., Tortora, G., y d'Antonio, L. (2013). An environmental friendly cycle for Cr (III) removal and recovery from tannery wastewater. Journal of environmental management, 117, 1-6.
https://doi.org/10.1016/j.jenvman.2012.12.012
Fanun, M. (Ed.). (2014). The Role of Colloidal Systems in Environmental Protection: Effective Utilization of Solid Waste from Leather Industry. Elsevier. Pages 593-613
https://doi.org/10.1016/B978-0-444-63283-8.00023-5
Fathima, N., Aravindhan, R., Rao, J., y Nair, B. (2009). Utilization of organically stabilized proteinous solid waste for the treatment of coloured waste-water. Journal of chemical technology and biotechnology, 84(9), 1338-1343.
https://doi.org/10.1002/jctb.2186
Fathima, N., Aravindhan, R., Rao, J., y Nair, B. (2011). Stabilized protein waste as a source for removal of color from wastewaters. Journal of applied polymer science, 120(3), 1397-1402.
https://doi.org/10.1002/app.32884
Font, R., Caballero, J., Esperanza, M., Fullana, A. (1999). Pyrolytic products from tannery wastes. Journal of Analytical and Applied Pyrolysis, 49, 243-56.
https://doi.org/10.1016/S0165-2370(98)00117-X
Girgis, B., Ishak, M. (1999). Activated carbon from cotton stalks by impregnation with phosphoric acid. Materials Letters, 39(2), 107- 114.
https://doi.org/10.1016/S0167-577X(98)00225-0
Gupta, V. (2009). Application of low-cost adsorbents for dye removal - A review. Journal of environmental management, 90(8), 2313-2342.
https://doi.org/10.1016/j.jenvman.2008.11.017
Gutiérrez, D., Vivas, S., Moreno, L. (2014). Evaluación de las propiedades mecánicas de una mezcla asfáltica densa en caliente tipo 2 MDC-2 elaborada con asfalto modificado con caucho vulcanizado de suela de bota militar (tesis de pregrado). Facultad de Ingeniería, Universidad Católica de Colombia, Bogotá, Colombia.
Haas, M., y Foglia, T. (2005). Alternate feedstocks and technologies for biodiesel production. The biodiesel handbook, 42-61.
https://doi.org/10.1201/9781439822357.ch4.2
Hayashi, J., Horikawa, T., Takeda, I., Muroyama, K., Nasir, F. (2002). Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon, 40(13), 2381-2386.
https://doi.org/10.1016/S0008-6223(02)00118-5
Islam, B., Musa, A., Ibrahim, E., Sharafa, S., y Elfaki, B. (2014). Evaluation and Characterization of Tannery Wastewater. Journal of forest products and Industries, 3 (3), 141-150.
Kanagaraj, J., Senthivelan, T., Panda, R., y Kavitha, S. (2015). Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: A comprehensive review. Journal of Cleaner Production, 89, 1-17.
https://doi.org/10.1016/j.jclepro.2014.11.013
Kantarli, I., y Yanik, J. (2010). Activated carbon from leather shaving wastes and its application in removal of toxic materials. Journal of hazardous materials,179(1), 348-356.
https://doi.org/10.1016/j.jhazmat.2010.03.012
Kolomazník, K., Barinova, M., y Fuerst, T. (2009). Possibility of using tannery waste for biodiesel production. The Journal of the American Leather Chemists Association, 104(5), 177-182.
Koutinas, A.; Kopsahelis, N.; Stamatelou, K.; Dickson, F.; et al. (2012). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 6, 426-464.
Lefebvre, O., Vasudevan, N., Torrijos, M., Thanasekaran, K., y Moletta, R. (2006). Anaerobic digestion of tannery soak liquor with an aerobic post-treatment. Water research, 40(7), 1492-1500.
https://doi.org/10.1016/j.watres.2006.02.004
Leta, S., Assefa, F., Gumaelius, L., y Dalhammar, G. (2004). Biological nitrogen and organic matter removal from tannery wastewater in pilot plant operations in Ethiopia. Applied microbiology and biotechnology, 66(3), 333-339.
https://doi.org/10.1007/s00253-004-1715-2
Lin, C., Pfaltzgraff, L., Herrero-Davila, L., Mubofu, E., Solhy, A., Clark, J., Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy and Environmental Science, 6(2), 426- 464.
https://doi.org/10.1039/c2ee23440h
Lofrano, G., Meriç, S., Zengin, G., y Orhon, D. (2013). Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: A review. Science of The Total Environment, 461, 265-281.
https://doi.org/10.1016/j.scitotenv.2013.05.004
Lua, A., Yang, T., y Guo, J. (2004). Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachionut shells. Journal of analytical and applied pyrolysis, 72(2), 279-287.
https://doi.org/10.1016/j.jaap.2004.08.001
Mannucci, A., Munz, G., Mori, G., y Lubello, C. (2010). Anaerobic treatment of vegetable tannery wastewaters: a review. Desalination, 264(1), 1-8.
https://doi.org/10.1016/j.desal.2010.07.021
Marshall Cavendish Corporation Staff (Ed.). (2003). How It Works: Science and Technology. Marshall Cavendish.
Menjura, C. (2014). Características mecánicas de una mezcla MDC-2 con adición de caucho y cuero de bota militar. V Congreso Internacional de Ingeniería Civil, Tunja, Colombia.
Moreno, L., y Calvo, D. (2014). Estudio mecánico del asfalto modificado con polímeros y cueros que son utilizados en la elaboración del calzado. V Congreso Internacional de Ingeniería Civil, Tunja, Colombia.
Natchimuthu, N., Radhakrishnan, G., Palanivel, K., Ramamurthy, K., y Anand, J. S. (1994). Vulcanization characteristics and mechanical properties of nitrile rubber filled with short leather fibres. Polymer international, 33 (3), 329-333.
https://doi.org/10.1002/pi.1994.210330313
NPCS - NIIR Project Consultancy Services. (2005). Leather processing and taining technology handbook. India, National Institute of industrial research.
Oliveira, L., Guerreiro, M., Gonçalves, M., Oliveira, D., y Costa, L. (2008). Preparation of activated carbon from leather waste: a new material containing small particle of chromium oxide. Materials Letters, 62(21), 3710-3712.
https://doi.org/10.1016/j.matlet.2008.04.064
Oliveira, L., Goncalves, M., Oliveira, D., Guerreiro, M., Guilherme, L., y Dallago, R. (2007). Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium. Journal of hazardous materials, 141(1), 344-347.
https://doi.org/10.1016/j.jhazmat.2006.06.111
Orhon, D., Genceli, E., y Çokgör, E. (1999). Characterization and modeling of activated sludge for tannery wastewater. Water environment research, 50-63.
https://doi.org/10.2175/106143099X121508
Özgünay, H., Çolak, S., Zengin, G., Sari, Ö., Sarikahya, H., y Yüceer, L. (2007). Performance and emission study of biodiesel from leather industry pre-fleshings. Waste Management, 27(12), 1897-1901.
https://doi.org/10.1016/j.wasman.2006.08.014
Piccin, J., Gomes, C., Feris, L., y Gutterres, M. (2012). Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chemical Engineering Journal, 183, 30-38.
https://doi.org/10.1016/j.cej.2011.12.013
Przepiorkowska, A., Chronska, K., y Zaborski, M. (2007). Chrome-tanned leather shavings as a filler of butadiene-acrylonitrile rubber. Journal of hazardous materials, 141(1), 252-257.
https://doi.org/10.1016/j.jhazmat.2006.06.136
Przepiorkowska, A., Prochon, M., y Zaborski, M. (2004). Use of waste collagen as filler for rubber compounds. Journal of the society of leather technologists and chemists, 88(6), 223.
Rajesh Banu, J., y Kaliappan, S. (2007). Treatment of tannery wastewater using hybrid upflow anaerobic sludge blanket reactor. Journal of Environmental Engineering and Science, 6(4), 415-421.
https://doi.org/10.1139/s06-063
Ramaraj, B. (2006). Mechanical and thermal properties of ABS and leather waste composites. Journal of applied polymer science, 101(5), 3062-3066.
https://doi.org/10.1002/app.24113
Rao, J. R., Thanikaivelan, P., Sreeram, K. J., y Nair, B. U. (2002). Green route for the utilization of chrome shavings (chromium-containing solid waste) in tanning industry. Environmental science y technology, 36(6), 1372-1376.
https://doi.org/10.1021/es015635s
Ravichandran, K., y Natchimuthu, N. (2005). Natural rubber - leather composites. Polímeros, 15(2), 102-108
https://doi.org/10.1590/S0104-14282005000200008
Ravichandran, K., y Natchimuthu, N. (2005). Vulcanization characteristics and mechanical properties of natural rubber-scrap rubber compositions filled with leather particles. Polymer international, 54(3), 553-559.
https://doi.org/10.1002/pi.1725
Reyes, U., y Pinzón, J. (2013). Asfaltos modificados con caucho y cuero de bota militar (tesis de pregrado). Facultad de Ingeniería, Universidad Católica de Colombia, Bogotá, Colombia.
Rodríguez, G., y Téllez, G. (2013). Caracterización física de asfalto modificado con cuero de calzado (tesis de pregrado). Facultad de Ingeniería, Universidad Católica de Colombia, Bogotá, Colombia.
San Miguel, G., Fowler, G., y Sollars, C. (2003). A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber. Carbon, 41(5), 1009-1016.
https://doi.org/10.1016/S0008-6223(02)00449-9
Silitonga, A., Masjukia H., Mahliac, T., Onga, H., Chonga, W., Boosroh, M. (2013). Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renewable and Sustainable Energy Reviews, 22, 346-360
https://doi.org/10.1016/j.rser.2013.01.055
Shabani, I., Arani, A., Dakhel, H., e Iranmehr, G. (2009). Using of leather fibers as an additive in elastomeric compounds: Its effect on curing behavior and physico-mechanical properties. Journal of applied polymer science, 111(4), 1670-1675.
https://doi.org/10.1002/app.29159
Suganthi, V., Mahalakshmi, M., y Balasubramanian, N. (2013). Development of hybrid membrane bioreactor for tannery effluent treatment. Desalination, 309, 231-236.
https://doi.org/10.1016/j.desal.2012.10.014
Thanikaivelan, P. (abril de 2014). Transformation of Leather Industry Bio-Wastes into High-Value Multifunctional Materials. En: International and Interuniversity Center for Nanoscience and Nanotechnology (IIUCNN). Third International Conference on Recycling and Reuse of Materials. Kerala, India.
Viveros, C. y J. González. (2012). Estudio del comportamiento de mezclas densas en caliente tipo 2 (MDC -2) empleando asfaltos modificados con caucho, (tesis de pregrado). Facultad de Ingeniería, Universidad Católica de Colombia, Bogotá, Colombia.
Yilmaz, O., Cem Kantarli, I., Yuksel, M., Saglam, M., y Yanik, J. (2007). Conversion of leather wastes to useful products. Resources, conservation and recycling, 49(4), 436-448.