Informador Técnico
ISSN: 2256-5035 (Electrónico)
ISSN: 0122-056X (Impreso)
Formato: Electrónico / Acceso Abierto
Frecuencia: Números Semestrales
Revisión por Pares: Doble Ciego
Las fibras vegetales se están convirtiendo en una alternativa realmente llamativa para aplicaciones industriales por su bajo costo, peso ligero y por ser una materia prima renovable con propiedades superiores a otros materiales cuando se utiliza como refuerzo en materiales compuestos de matriz polimérica. Este tipo de materiales se vienen utilizando en industrias como calzado y marroquinería, componentes en caucho, sector transporte y construcción, por citar los más relevantes. En este trabajo se presenta una revisión sobre el uso de algodón, fique, yute y cáñamo en compuestos de matriz polimérica, iniciando con la clasificación de las fibras vegetales y sus propiedades. Se describe la evolución del uso de las fibras naturales estudiadas en diversos componentes, los principales desafíos para la obtención de compuestos con altas propiedades, y aspectos a considerar por los responsables por el diseño de productos industriales o de consumo masivo.
Albinante, S., Pacheco, E., e Visconte, L. (2013). Revisão dos tratamentos químicos da fibra natural para mistura com poliolefinas. Química Nova, 36(1), 114-122.
https://doi.org/10.1590/S0100-40422013000100021
Araujo, J., Waldman, W. R., and De Paoli, M. A. (2008). Thermal properties of high density polyethylene composites with natural fibers: Coupling agent effect. Polymer degradation and stability, 93(10), 1770-1775.
https://doi.org/10.1016/j.polymdegradstab.2008.07.021
Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries. Bioresource Technology, 99(11), 4661-4667.
https://doi.org/10.1016/j.biortech.2007.09.043
PMid:18068352
Azwa, Z. N., Yousif, B. F., Manalo, A. C., and Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials and Design, 47, 424-442.
https://doi.org/10.1016/j.matdes.2012.11.025
Baillie, C. (Ed.). (2004). Green composites: polymer composites and the environment. Elsevier.
Begum K. and Islam M.A. (2013). Natural Fiber as a substitute to Synthetic Fiber in: A Review Research Journal of Engineering Sciences. ISSN 2278 – 9472 Vol. 2(3), 46-53.
Beltran, M. (2011). Calzado Natural. Recuperado de: http://e-videncia.com/diseno-eimplementacion-de-una-linea-ecologicade-calzado-con-la-utilizacion-de-fibrasbiodegradables.
Bledzki, A. K., Sperber, V. E., and Faruk, O. (2002). Natural and wood fiber reinforcement in polymers (Vol. 13). Smithers Rapra Publishing.
Chen, H., Miao, M., and Ding, X. (2009). Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Composites Part A: Applied Science and Manufacturing, 40(12), 2013-2019.
https://doi.org/10.1016/j.compositesa.2009.09.003
Connor, D. J. (1999). U.S. Patent No. 5,992,055. Washington, DC: U.S. Patent and Trademark Office.
Dey, D. (2005). Indian Jute Industry at the Cross Road: Focus on West Bengal.Available at SSRN 756411.
https://doi.org/10.2139/ssrn.756411
Dhanabalan, L.S.K.V., and Joshi, M. (2014). Furcraea - A unique fibre. Textile Trends, 56(11), 29-34
Dittenber, D. B., and GangaRao, H. V. (2012). Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing, 43(8), 1419-1429.
https://doi.org/10.1016/j.compositesa.2011.11.019
Dhakal, H.N. and Zhang, Z. (2015). The use of hemp fibers as reinforcements in composites, In Biofiber Reinforcements in Composite Materials, pp 86- 103.
Eryuruk, S. H. (2012). Greening of the textile and clothing industry. Fibres and Textiles in Eastern Europe, 20(6), 95.
Fatima, S., and Mohanty, A. R. (2011). Acoustical and fire-retardant properties of jute composite materials. Applied Acoustics, 72(2), 108-114.
https://doi.org/10.1016/j.apacoust.2010.10.005
Fiore, V., Scalici, T., and Valenza, A. (2014). Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate polymers, 106, 77 - 83.
https://doi.org/10.1016/j.carbpol.2014.02.016
PMid:24721053
Ga-án, P., and Mondragón, I. (2002). Surface modification of fique fibers. Effect on their physico-mechanical properties. Polymer Composites, 23(3), 383-394.
https://doi.org/10.1002/pc.10440
Gómez, C., and Vázquez, A. (2012). Flexural properties loss of unidirectional epoxy/fique composites immersed in water and alkaline medium for construction application. Composites Part B: Engineering, 43(8), 3120– 3130.
https://doi.org/10.1016/j.compositesb.2012.04.027
Hashem, M., Ibrahim, N. A., El-Shafei, A., Refaie, R., and Hauser, P. (2009). An eco-friendly– novel approach for attaining wrinkle– free/soft-hand cotton fabric.Carbohydrate Polymers, 78(4), 690-703.
https://doi.org/10.1016/j.carbpol.2009.06.004
John, M. J., and Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate polymers, 71(3), 343-364.
https://doi.org/10.1016/j.carbpol.2007.05.040
Joshi, S. V., Drzal, L. T., Mohanty, A. K., and Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites?. Composites Part A: Applied science and manufacturing, 35(3), 371-376.
https://doi.org/10.1016/j.compositesa.2003.09.016
Kalia, S., Kaith, B. S., and Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polymer Engineering and Science, 49(7), 1253-1272.
https://doi.org/10.1002/pen.21328
Khalil H.P.S.A., Rozman, H.D., Ahmad, M.N., and Ismail, H. (2000). Acetylated plantfiber reinforced polyester composites: a study of mechanical, hygrothermal, and aging characteristics. Polym Plast Tech Eng, 39:757–81.
https://doi.org/10.1081/PPT-100100057
Kim, E.B. (2012). Disposable cushion shoe insert. Generic. Recuperado de: http://www.google.com.br/patents/US8112907.Google Patents.
La Mantia, F.P. and Morreale, M. (2007). Improving the properties of polypropylene–wood flour composites by utilization of maleated adhesion promoters. Composite Interfaces, 14(7-9),685–98.
https://doi.org/10.1163/156855407782106500
La Mantia, F. P., and Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588.
https://doi.org/10.1016/j.compositesa.2011.01.017
Lovely, M., Joseph, K.U., Rani, J. (2004). Isora fibres and their composites with natural rubber. Progress in Rubber Plastics Recycling Technology, 20(4), 337-349.
Manfredi, L. B., Rodríguez, E. S., Wladyka- Przybylak, M., and Vázquez, A. (2006). Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polymer Degradation and Stability, 91(2), 255-261.
https://doi.org/10.1016/j.polymdegradstab.2005.05.003
Methacanon, P., Weerawatsophon, U., Sumransin, N., Prahsarn, C., and Bergado, D. T. (2010). Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydrate Polymers, 82(4), 1090-1096.
https://doi.org/10.1016/j.carbpol.2010.06.036
Meza C.A., Pazos-Ospina, J.F., Franco, E.E., Ealo, J.L., Collazos-Burbano, D.A., and Casanova, G.F. (2015). Ultrasonic Determination of the Elastic Constants of Epoxy-natural Fiber Composites. Physics Procedia, 70, 467-470.
https://doi.org/10.1016/j.phpro.2015.08.287
Mohanty, A. K., Misra, M., and Drzal, L. T. (Eds.). (2005). Natural fibers, biopolymers, and biocomposites. CRC Press.
https://doi.org/10.1201/9780203508206.ch1
https://doi.org/10.1201/9780203508206
Moriana, R., Vilaplana, F., Karlsson, S., and Ribes, A. (2014). Correlation of chemical, structural and thermal properties of natural fibres for their sustainable exploitation. Carbohydrate polymers, 112, 422-431.
https://doi.org/10.1016/j.carbpol.2014.06.009
PMid:25129763
Mukhopadhyay, S., and Fangueiro, R. (2009). Physical Modification of Natural Fibers and Thermoplastic Films for Composites - A Review. Journal of Thermoplastic Composite Materials, 22(2), 135-162.
https://doi.org/10.1177/0892705708091860
Mwaikambo, L. (2006). Review of the history, properties and application of plant fibres. African Journal of Science and Technology, 7(2), 121.
Nair, A.B. and Joseph, R. (2014). Eco-friendly biocomposites using natural rubber (NR) matrices and natural fiber reinforcements, In Chemistry, Manufacture and Applications of Natural Rubber, pp 249-283.
Netravali, A. N. (2005). Biodegradable natural fiber composites. Biodegradable and Sustainable Fibres, CRC Press Boca Raton, Cambridge, England, 271-309.
https://doi.org/10.1533/9781845690991.271
Pickering, K. (Ed.). (2008). Properties and performance of natural-fibre composites. Elsevier.
https://doi.org/10.1533/9781845694593
https://doi.org/10.1201/9781439832141
Planet Shoes (2015). A New Way to be Vegan: RENEU Footwear. Recuperado de: http://blog.planetshoes.com/tag/eco-friendlyfootwear-materials/
Raju, G., and Kumarappa, S. (2012). Experimental study on mechanical and thermal properties of epoxy composites filled with agricultural residue. Polymers from Renewable Resources, 3(3), 117-138.
Ramakrishna, G. (2010). Rheological strength and durability characteristics of sisal fibre reinforced cementitious composites.
Rana, A. K., and Jayachandran, K. (2000). Jute fiber for reinforced composites and its prospects. Molecular Crystals and Liquid Crystals, 353(1), 35-45.
https://doi.org/10.1080/10587250008025646
Ranalli, P., and Venturi, G. (2004). Hemp as a raw material for industrial applications. Euphytica, 140(1-2), 1-6.
https://doi.org/10.1007/s10681-004-4749-8
Rieker, J. (04 de febrero de 2015). Creo Shoe Concept. Recuperado de: http://www.jennifer-rieker.de/index.php?/project/creo-shoe-concep.
Roul, C. (2009). The international jute commodity system. Northern Book Centre.
Satyanarayana, K. G., Guimarães, J. L., and Wypych, F. (2007). Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites Part A: Applied Science and Manufacturing, 38(7), 1694-1709.
https://doi.org/10.1016/j.compositesa.2007.02.006
Satyanarayana, K. G., Arizaga, G. G., and Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers—an overview. Progress in Polymer Science, 34(9), 982-1021.
https://doi.org/10.1016/j.progpolymsci.2008.12.002
Sen, T., and Reddy, H. J. (2011). Application of sisal, bamboo, coir and jute natural composites in structural upgradation. International Journal of Innovation, Management and Technology, 2(3).
Shih, Y. F. (2007). Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Materials Science and Engineering: A,445, 289-295.
https://doi.org/10.1016/j.msea.2006.09.032
Shih, Y., Chang, W., Liu, W., Lee, C., Kuan, C., and Yu, Y. (2014). Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 2039-2046.
https://doi.org/10.1016/j.jtice.2014.02.015
Small, E., and Marcus, D. (2002). Hemp: A new crop with new uses for North America. Trends in new crops and new uses, 284-326.
Summerscales, J., Dissanayake, N. P., Virk, A. S., and Hall, W. (2010). A review of bast fibres and their composites. Part 1–Fibres as reinforcements.Composites Part A: Applied Science and Manufacturing, 41(10), 1329-1335.
https://doi.org/10.1016/j.compositesa.2010.06.001
Taj, S., Munawar, M.A., and Khan, S. (2007). Natural fiber-reinforced polymer composites. Proceedings-Pakistan Academy of Sciences, 44(2), 129.
Tapia, C., Paredes, C., Simba-a, A., and Bermúdez, J. (2013). Aplicación de las Fibras Naturales en el Desarrollo de Materiales Compuestos y como Biomasa. Revista Tecnológica- ESPOL, 19(1).
Thakur, V.K. (Ed.). (2013). Green composites from natural resources. CRC Press.
https://doi.org/10.1201/b16076
Wong, K.J., Yousif, B.F., and Low, K.O. (2010). The effects of alkali treatment on the interfacial adhesion of bamboo fibres. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications,224 (3), 139-148.
https://doi.org/10.1243/14644207jmda304
Xie, Y., Hill, C.A., Xiao, Z., Militz, H., and Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819.
https://doi.org/10.1016/j.compositesa.2010.03.005
Yousif, B.F., and El-Tayeb, N.S.M. (2009). Mechanical and wear properties of oil palm and glass fibres reinforced polyester composites. International Journal of Precision Technology, 1(2), 213-222.
https://doi.org/10.1504/IJPTECH.2009.026380
Yousif, B. F., Shalwan, A., Chin, C. W., and Ming, K. C. (2012). Flexural properties of treated and untreated kenaf/epoxy composites. Materials and Design, 40, 378-385.
https://doi.org/10.1016/j.matdes.2012.04.017
Zulkifh, R., Nor, M. M., Tahir, M. M., Ismail, A. R., and Nuawi, M. Z. (2008). Acoustic properties of multi-layer coir fibres sound absorption panel. Journal of Applied Sciences, 8(20), 3709- 3714.
https://doi.org/10.3923/jas.2008.3709.3714
Zulkifh, R., Nor, M. M., Tahir, M. M., Ismail, A. R., and Nuawi, M. Z. (2009). Effect of perforated size and air gap thickness on acoustic properties of coir fibre sound absorption panels. Eur J Sci Res 28, 242–52.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2019 Servicio Nacional de Aprendizaje (SENA)