Non thermal technologies in the processing and conservation of vegetable foods. A review
Volumen 2 • Enero-Diciembre 2015 • ISSN Impreso: 2422-0582-ISSN electrónico: 2422-4456
HTML (Español (España))
PDF (Español (España))


Conservation technologies
fruits and vegetables
Food processing. Alimentos
Tecnologías de conservación
Métodos no térmicos
Frutas y hortalizas

How to Cite

Soleno Wilches, R. (2015). Non thermal technologies in the processing and conservation of vegetable foods. A review. Revista Colombiana De Investigaciones Agroindustriales, 2(1), 73–82.


During the last three decades a greater concern for consumers in the global scale regarding the quality and safety of food offered by the market has become more evident. In that sense, a marked trend towards finding healthy products and / or those that do not represent significant risks to health and moreover provide more freshness and convenience when consumption. In response, initially initiatives to eliminate the use of additives and preservatives emerged, mostly based on thermal processes (pasteurization, sterilization, freezing, etc.), that achieved to lengthen shelf life, but have direct impact on initial product characteristics (freshness, texture, nutrient content, color, etc.). In consequence focus was placed on research and development of conservation technologies they were able to keep most of the natural properties of food. The minimum processing that combines the use of plastics as a barrier, modified atmosphere (passive and active), and cold storage is the particular case of fruits and vegetables. This technology allows the production of fresh product (cut or not), but with a limited useful life period (7-15 days). Recent advances in the field are focused on the use of non-thermal technologies that are able to maintain the initial characteristics and safety of plant products for a longer period of time, although there has been progress in developing thermal technologies that reduce the negative effects on the treated products. Within the non-thermal technologies include pulsating electric fields, ultrasounds, high hydrostatic pressures, irradiation, oscillating magnetic fields, cold plasma, high-intensity white light, among others. The present review aims to study these technologies, with emphasis on the basic principles and their use in vegetal food processing.



Para citar este artículo

Soleno, R. (2015). Tecnologías no térmicas en el procesado y conservación de alimentos vegetales. Una revisión. Rev. Colomb. Investig. Agroindustriales, 2(1), 73-83. DOI:
HTML (Español (España))
PDF (Español (España))


Alkawareek, M.Y., Gorman, S.P., Graham, W.G. & Gilmore, B.F. (2014). Potential cellular targets and antibacterial efficacy of atmospheric pressure nonthermal plasma. International Journal of Antimicrobial Agents, 43, 154-160.

Alzamora, S. M., López-Malo, A., Guerrero, S. & Palou, E. (2003). Plant antimicrobials combined with conventional preservatives for fruit products, in: Natural Antimicrobials for the Minimal Processing of Foods. London: Woodhead Publishing, Ltd.

Artés, F. (2000a). Productos vegetales procesados en fresco en: Aplicación del frío al los alimentos. Editor: M. Lamúa. Editorial: Mundi Prensa. Cap. 5. pp. 127-141.

Artés, F. (2000b). Conservación de los productos vegetales en atmósferas modificadas. En: Aplicación del frío en los alimentos. Editor. M. Lamúa. Ed. Mundi Prensa. Cap. 4.105-125

Ávila-Sosa, R. y López-Malo, A. (2008). Aplicación de sustancias antimicrobianas a películas y recubrimientos comestibles. En: Temas selectos de ingeniería de alimentos, 2 (2), 4-13.

Barbosa-Cánovas, G. V. y Bermúdez-Aguirre, D. (2010). Procesamiento no térmico de alimentos. Scientia Agropecuaria. Recuperado de: http://www.redalyc.orgarticulo.oa?id=357633694008[Fecha de consulta: 10 de septiembre de 2015].

Barbosa-Cánovas, G.V., Pothakamury, U.R., Palou, E. & Swanson, B.G. (1999). Conservación no térmica de alimentos (in Spanish). Zaragoza, Spain: Editorial Acribia, S.A.

Bendicho, S., Marselles, F., Barbosa Canovas, G. & Martín- Belloso, O. (2005). High intensity pulsed electric fields and heat treatments applied to a protease from Bacillus subtilis. A comparison study of multiple systems. Journal of Food Engineering, 69, 317-323.

Cano, P. (2001). Procesado y conservación de alimentos vegetales. Revista Horticultura, 150,110-114.

Carbonell, X. (1990). La IV Gama II Parte. España: Horticultura 57.

Castorena-García, J.H., Martínez-Montes, F.J., Robles- López, M.R., Welti-Chanes, J.S., Hernández-Sánchez, H. & Robles-de-la-Torre, R.R..(2013). Effect of electric fields on the activity of polyphenol oxidases. Revista Mexicana de Ingeniería Química, 12(3), 391-400.

Cheftel, J. C. (1995). Review: High-pressure, microbialinactivation and food preservation. Food Sci Technol. Int. 1, 75-90.

ChordiBarrufet, S. (2013). Contenido fenólico y capacidad antioxidante de fresa mínimamente procesada sometida a tratamientos de conservación por pulsos de luz de alta intensidad. (Tesis de grado). Universidad de Lleida.

Considine, K.M., Kelly, A.L., Fitzgerald, G.F., Hill, C. &Sleator, R.D.(2008). High-pressure processing effects on microbial food safety and food quality FEMS. Microbiol Lett, 281,1–9.

Farr, D. (1990). High pressure technology in the food industry. Trends Food Sci. Technol. 1, 14-16.

Fernández, J. J., Barbosa-Cánovas, G. V. y Swanson, B.G. (2001). Tecnologías emergentes para la conservación de alimentos sin calor. Arbor, 168(661), 155-170.

Gálvez, J.C. y Buitimea, G.V. (s/f). Uso de la radiación en la conservación de alimentos. Recuperado de:

González, E., Ancos, B. y Cano, M. (1999). Partialcharacterization of polyphenol oxidase activity in raspberry fruits. Journal of Agricultural and Food Chemistry, 47, 4068-4072.

Green, S., Basaran, N. y Swanson, B. (2005). Food preservation techniques.In Zenthen, P. and Bogh-Sorenson, L. (Eds). Washington, United States of America: Woodhead Publishing House.

Gweon, B., Kim, D. B., Moon, S. Y. & Choe, W. (2009). Escherichia coli deactivation study controlling the atmospheric pressure plasma discharge conditions. Current Applied Physics, 9, 625-628.

Hayashi, R. (1989). Application of high pressure to food processing and preservation: philosophy and development. En: Spiess, W y Schubert, H. (Ed.). Engineering and Food (pp. 815- 826). Elsevier Appl. Sc: London.

Hayashi, N., Akyyoshi, Y., Kobayashi, Y., Kanda, K., Ohshima, K. & Goto, M. (2013). Inactivation characteristics of Bacillus thuringiensis spore in liquid using atmospheric torch plasma using oxygen. Vacuum, 58,173-176.

Heinz, V., Álvarez, I., Angersbach, A. & Knorr, D. (2002). Preservation of liquid foods by high intensity pulse electric fields-basic concepts for food processing design. Trends in Food Science and Technology, 12,103-111.

Hoover, D.G. (1997). Minimally processed fruits and vegetables: reducing microbial load by nonthermal physical treatments. Food Technol, 51(6), 66-71.

Herrero, A.M. y Romero de Ávila, M.D. (2006). Innovaciones en el procesado de alimentos: Tecnologías no térmicas. Rev. Med. Univ. Navarra, 50(4), 71-74.

Huesca-Espitia, L.C., Sánchez-Salas, J.L. y Bandala, E.R. (2014). Métodos para la inactivación de esporas en alimentos. Temas selectos de ingeniería de alimentos, 8(1),48-67.

Hurtado, S. (2013). Efecto de la aplicación de ultrasonidos en vegetales: Impacto sobre la microbiota, textura y color de

la Zanahoria (Daucus carota). (Tesis de grado). Universitat Politécnica de Catalunya Barcelonatech. Escola Superior

D’agricultura de Barcelona.

Knorr, D. (2000). Process aspects of high pressure treatment of food systems. En: Barbosa-Cánovas GV & Gould, GW, (edi.) Food preservation technology series (pp. 13-31). USA: Inc.

Kim, B., Yun, H., Jung, S. Jung, Y., Jung, H., Choe, W. & Jo, Ch. (2011). Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions. Food Microbiology, 28, 9-13.

Liu, H,; Chen, J.; Yang, L.; Zhou, Y. (2008). Long-distance oxygen plasma sterilization: effects and mechanisms. Applied Surface Science, 254, 1815-1821.

López-Malo, A., Palou, E., León-Cruz, R. & Alzamora,S. M. (2006). Mixtures of natural and synthetic antifungal agents.In Advances in food mycology, pp. 261-286.

Mason,T.J. (1990). Chemistry with ultrasound.Published for the Society of Chemical Industry. USA: Elsevier Applied Science.

Mayer A. (2006). Polyphenol oxidases in plants and fungi: going places? a review. Phytochemistry, 67, 2318-2331.

Meyer R., Cooper, K., Knorr, D. & Lelieveld, H. (2000). High-pressure sterilization of foods.J. Food Technology. 54(11), 67-72.

Min, S., Min, S.K. & Zhang, Q.H. (2003). Inactivation kinetics of tomato juice lipoxygenase by pulsed electric fields. Journal of Food Science, 68, 1995-2001.

Molins, R.A., Motarjemi, Y. & Käferstein, F.K. (2001). Food Control. 12, 347-356.

Morehouse K.M. & Komolprasert, V. (2004).Irradiation of food and packaging: an overview. In: Komolprasert V, Morehouse KM. (Ed). Irradiation of food and packaging: recent developments (pp. 1–11) Boston, Mass: American Chemical Society.

Morris, C., Brody, A. L. & Wicker, L. (2007). Non-thermal food processing/ preservation technologies: A review with packaging implications. PackagingTechnology and Science, 20, 275–286.

OMS (2005). Biotecnología moderna de los alimentos, salud y desarrollo humano: estudio basado en evidencias. Ginebra, Suiza: Departamento de Inocuidad Alimentaria.

Parzanese, M. (s/f). Tecnologías para la industria alimentaria. Ultrasonidos. Ficha, 19, 1-9.

Pothakamury, U. R., Barbosa-Cánovas, G. & Swanson, B.G. (1995). The pressure builds for better food processing. Chem. Eng. Progress, 45-53.

Pérez, B. S. (2001). Nuevos alimentos y nuevas tecnologías emergentes de la industria alimentaria. Mexico: Monografías de la Real Academia Nacional de Farmacia.

Pinchao, Y. A., Osorio, O. y Mejía, D. (2014). Inactivación térmica de pectinmetilesterasa en jugo de uchuva (Physalis peruviana L.). Información tecnológica, 25(5),55-64.

Qin, B.-L., Barbosa-Cánovas, G.V., Swanson, B.G., Pedrow, P.D. & Olsen, R.G. (1998). Inactivating micoorganisms using a pulsed electric field continuous treatment system. IEEE Trans. Ind. Appl. (34),43-50.

Quintero, C., Falguera, V. & Muñoz, A. (2010). Películas y recubrimientos comestibles: Importancia y tendencia recientes en la cadena hortofrutícola. Revista Tumbaga, 1(5), 93-118.

Raybaudi-Massilia, R.M., Tapia, M.S. y Mosqueda-Melgar, J. (2012). Películas y recubrimientos comestibles on efecto antimicrobiano. Recuperado de:

Robles-Ozuna, L.E. y Ochoa-Martínez, L.A. (2012).Ultrasonido y sus aplicaciones en el procesamientode alimentos. Revista Iberoamericana de TecnologíaPostcosecha, 13(2),109-122.

Ramos-Villarroel, A.Y., Martín-Belloso, O. y Soliva- Fortuny, R. (2013). Pulsos de luz intensa: inactivación microbiana en frutas y hortalizas, CyTA - Journal of Food, 11(3), 234-242.

Roberts, P. y Hope, A. (2003). Virus inactivation by high intensity broad spectrum pulsed light. Journal of Virological Methods, 110, 61-65.

Rowan, N. J., MacGregor, S. J., Anderson, J. G., Fouracre, R. A., Mcllvaney, L. & Farish, O. (1999). Pulsed-light inactivation of food-related microorganisms. Applied and Environmental Microbiology, 65, 1312-1315.

Sharma, R. R. y Demirci, A. (2003). Inactivation of Escherichia coli O157:H7 on inoculated alfalfa seeds with pulsed ultraviolet light and response surface modeling. Journal of Food Science, 68, 1448-1453.

Seymour, I.J., Burfoot, D., Smith, R.L., , Cox, L.A. & Lockwood., J. (2002). Ultrasound decontamination ofminimally processed fruits and vegetables. Int. J. Food Sci. Technol., 37, 547–557.

Song, H.P., Kim, B., Choe, J.M., Jung, S., Moon, S.Y., Choe, W. y Jo, C. (2009). Evaluation of atmospheric pressure plasma to improve the safety of slice cheese and ham inoculated by 3-strain cocktail Listeria nocytogenes. Food Microbiology, 26, 432-436.

Sosa, D. (2006). Pulsos eléctricos de alta tensión para conservación de alimentos y esterilización médica. XIV Seminario de Ing. Biomédica, Facultades de Medicina e Ingeniería, Universidad de la República Oriental del Uruguay, 6 pp.

Surowsky, B., Fröhling, A., Gottschalk, O. & Knorr, D.(2014). Impact of cold plasma on Citrobacter freundii in apple juice: Inactivation kinetics and mechanisms. International Journal of Food Microbiology, 174, 63-71.

Téllez-Luis, S. J., Ramírez, J. A., Pérez-Lamela, C.,Vázquez, M. & Simal-Gándara, J. (2001). Aplicación de la alta presión hidrostática en la conservación de los alimentos, Ciencia y Tecnología Alimentaria, 3(2), 66-80.

Tirilly, Y., Bourgeois, C.M. (Coord.). (2002). Tecnología de las hortalizas. Zaragoza, España: Acribia.

Welti-Chanes, J. y Bermúdez, D. (2003). Nuevas tendencias en el procesamiento de alimentos. Departamento de Ingeniería Química y Alimentos. Puebla. México: Universidad de las Américas.

Wiley, R.C. (1997). Frutas y Hortalizas Mínimamente Procesadas y Refrigeradas. España: Acribia.

Yeom, H.W., Zhang, Q.H. y Dunne, C.P. (1999). Inactivation of papain by pulsed electric fields in a continuous system.Food Chemistry, 67, 53- 59.

Yeom, H.W., Zhang, Q. H. & Chism, G. W. (2002). Inactivation of pectin methylesterase in orange juice by pulsed electric fields.Journal of Food Science, 67, 2154- 2159.

Ziuzina, D., Patil, S., Cullen, P.J., Keener, K.M. & Bourke, P. (2014). Atmospheric cold plasma inactivation of Escherichia coli, Salmonella entericaserovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 42, 109-116.

Zhong, K., Hu, X., Guanghua, Z., Chen, F. & Liao, X. (2005). Inactivation and conformational change of horseradish peroxidase induced by pulsed electric field.Food Chemistry, 92, 473-479.


Download data is not yet available.