Estabilización química de suelos - Materiales convencionales y activados alcalinamente (revisión)

Palabras clave: estabilizacion de suelos, materiales activados alcalinamente, cementos, residuos industriales, geopolimeros

Resumen

El creciente interés por el desarrollo de alternativas frente al uso masivo de cementantes tradicionales en aplicaciones geotécnicas, tales como cemento y cal, se debe en gran medida a los retos ambientales y costos asociados en este tipo de aplicaciones. Los cementantes activados alcalinamente surgen como una de las alternativas de mayor sostenibilidad, particularmente por su bajo consumo energético y en teoría la baja huella de carbono en su fabricación; además, tienen la posibilidad de utilizar residuos y subproductos industriales como materiales precursores en su fabricación. Este artículo presenta un estado del arte de los diversos materiales empleados convencionalmente en la estabilización química de suelos y realiza una revisión de los artículos publicados en relación con la implementación de cementantes activados alcalinamente, su viabilidad técnica, los impactos ambientales asociados y los retos que se deben superar para lograr posicionarlos como una alternativa sostenible para procesos geotécnicos.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Jhonathan F. Rivera, Universidad del Valle
Ingeniero de Materiales, Candidato a Doctor en Ingeniería. Grupo Materiales Compuestos (GMC-CENM), Escuela de Ingeniería de Materiales, Universidad del Valle, Cali, Colombia, jhonathan.rivera@correounivalle.edu.co;  ORCID 0000-0003-0395-1517
Ana Aguirre-Guerrero, Universidad del Valle
Ph.D., Grupo Materiales Compuestos (GMC-CENM), Escuela de Ingeniería de Materiales, Universidad del Valle, Cali, Colombia, ana.aguirre@correounivalle.edu.co; ORCID 0000-0001-9986-6557
Ruby Mejía de Gutiérrez, Universidad del Valle
Ph.D., Grupo Materiales Compuestos (GMC-CENM), Escuela de Ingeniería de Materiales, Universidad del Valle, Cali, Colombia, ruby.mejia@correounivalle.edu.co; ORCID 0000-0002-5404-2738
Armando Orobio, Universidad del Valle
Ph.D, Grupo de Investigación en Construcción GRUA), Escuela de Ingeniería Civil y Geomática, Universidad del Valle, Cali-Colombia; armando.orobio@correounivalle.edu.co; ORCID 0000-0001-7166-3061

Referencias

ASTM International. (2017). Standard Guide for Evaluating Effectiveness of Admixtures for Soil Stabilization (ASTM D4609). West Conshohocken, PA, 2017.

ASTM International. (2018). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (ASTM C618). West Conshohocken, PA, 2018.

Abdeldjouad, Lokmane; Asadi, Afshin; Nahazanan, Haslinda; Huat, Bujang; Dheyab, Wisam; Elkhebu, Ahmed (2019). Effect of Clay Content on Soil Stabilization with Alkaline Activation. International Journal of Geosynthetics and Ground Engineering, 5, 4. https://doi.org/10.1007/s40891-019-0157-y

Abdullah, Hayder; Shahin, Mohamed; Sarker, Prabir (2019). Use of Fly-Ash Geopolymer Incorporating Ground Granulated Slag for Stabilisation of Kaolin Clay Cured at Ambient Temperature. Geotechnical and Geological Engineering, 37(2), 721-740. https://doi.org/10.1007/s10706-018-0644-2

Al-Mukhtar, Muzahim; Khattab, Suhail; Alcover, Jean-Francois (2012). Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering Geology, 139–140, 17–27. https://doi.org/10.1016/j.enggeo.2012.04.004

Al-Rawas, Amer (2002). Microfabric and mineralogical studies on the stabilization of an expansive soil using cement by-pass dust and some types of slags. Canadian Geotechnical Journal, 39(5), 1150–1167. https://doi.org/10.1139/t02-046

Andrew, Robbie (2017). Global CO2 emissions from cement production. Earth System Science Data, 1–52. Retrieved from https://doi.org/10.5281/zenodo.831455.

Arora, Sunil; Aydilek, Ahmet (2005). Class F Fly-Ash-Amended Soils as Highway Base Materials. Journal of Materials in Civil Engineering, 17(6), 640–649. https://doi.org/10.1061/(asce)0899-1561(2005)17:6(640)

Babu, K. G.; Rao, G. S. N. (1996). Efficiency of fly ash in concrete with age. Cement and Concrete Research, 26(3), 465–474. https://doi.org/10.1016/S0008-8846(96)85034-4

Bahar, Ramdane; Benazzoug, M.; Kenai, S. (2004). Performance of compacted cement-stabilized soil. Cement and Concrete Composites, 26, 811–820. https://doi.org/doi:10.1016/j.cemconcomp.2004.01.003

Bakharev, T. (2005). Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement and Concrete Research, 35(6), 1224–1232. https://doi.org/10.1016/j.cemconres.2004.06.031

Behnood, Ali (2018a). Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. Transportation Geotechnics, 17, 14–32. https://doi.org/10.1016/j.trgeo.2018.08.002

Behnood, Ali (2018b). Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. Transportation Geotechnics, 17, 14–32. https://doi.org/10.1016/j.trgeo.2018.08.002

Bell, F.G. (1996). Lime Stabilization of Clay Minerals and Soil. Engineering Geology, 42(42), 223–237. https://doi.org/10.1016/0013-7952(96)00028-2

Bensaifi, E.; Bouteldja, F.; Nouaouria, M. S.; Breul, P. (2019). Influence of crushed granulated blast furnace slag and calcined eggshell waste on mechanical properties of a compacted marl. Transportation Geotechnics, 20. https://doi.org/10.1016/j.trgeo.2019.100244

Billong, Ndigui; Melo, U. C.; Louvet, F.; Njopwouo, D. (2009). Properties of compressed lateritic soil stabilized with a burnt clay-lime binder: Effect of mixture components. Construction and Building Materials, 23(6), 2457-2460. https://doi.org/10.1016/j.conbuildmat.2008.09.017

Chen, Huie; Wang, Qing (2006). The behaviour of organic matter in the process of soft soil stabilization using cement. Bulletin of Engineering Geology and the Environment, 65(4), 445–448. https://doi.org/10.1007/s10064-005-0030-1

Cokca, Erdal; Yazici, Veysel; Ozaydin, Vehbi (2009). Stabilization of expansive clays using granulated blast furnace slag (GBFS) and GBFS-Cement. Geotechnical and Geological Engineering, 27(4), 489–499. https://doi.org/10.1007/s10706-008-9250-z

Coudert, Elodie; Paris, Michael; Deneele, Dimitri; Russo, Giacomo; Tarantino, Alessandro (2019). Use of alkali activated high-calcium fly ash binder for kaolin clay soil stabilisation: Physicochemical evolution. Construction and Building Materials, 201, 539-552. https://doi.org/10.1016/j.conbuildmat.2018.12.188

Criado, M.; Fernández-Jiménez, A.; Palomo, A. (2010). Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description. Fuel, 89(11), 3185–3192. https://doi.org/10.1016/j.fuel.2010.03.051

Cristelo, Nuno; Fernández-Jiménez, Ana; Castro, Fernando; Fernandes, Lisete;Tavares, Pedro (2019). Sustainable alkaline activation of fly ash, aluminium anodising sludge and glass powder blends with a recycled alkaline cleaning solution. Construction and Building Materials, 204, 609–620. https://doi.org/10.1016/j.conbuildmat.2019.01.226

Cristelo, Nuno; Glendinning, Stephanie; Fernandes, Lisete; Teixeira-Pinto, Amândio (2012). Effect of calcium content on soil stabilisation with alkaline activation. Construction and Building Materials, 29, 167–174. https://doi.org/10.1016/j.conbuildmat.2011.10.049

Cristelo, Nuno; Glendinning, Stephanie; Fernandes, Lisete; Teixeira-Pinto, Amândio (2013). Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation. Acta Geotechnica, 8(4), 395–405. https://doi.org/10.1007/s11440-012-0200-9

Cristelo, Nuno; Glendinning, Stephanie; Miranda, Tiago; Oliveira, Daniel; Silva, Rui (2012). Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction. Construction and Building Materials, 36, 727–735. https://doi.org/10.1016/j.conbuildmat.2012.06.037

Cristelo, Nuno; Glendinning, Stephanie; Teixeira-Pinto, Amândio (2011). Deep soft soil improvement by alkaline activation. Proceedings of the Institution of Civil Engineers - Ground Improvement, 164(2), 73–82. https://doi.org/10.1680/grim.900032

Cristelo, Nuno; Miranda, Tiago; Oliveira, Daniel; Rosa, Ivo; Soares, Edgar; Coelho, Paulo; Fernandes, Lisete (2015). Assessing the production of jet mix columns using alkali activated waste based on mechanical and financial performance and CO2 (eq) emissions. Journal of Cleaner Production, 102, 447–460. https://doi.org/10.1016/j.jclepro.2015.04.102

Damtoft, J. S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E. M. (2008). Sustainable Development and Climate Change Initiatives. Cement and Concrete Composites, 38(2), 115-127. https://doi.org/10.1016/j.cemconres.2007.09.008

Das, Braja (2013). Fundamentals of Geotechnical Engineering. Global Engineering: Christopher M. Shortt (Fourth Edition).

Das, Biki; Prakash, S.; Reddy, Palli; Misra, V. N. (2007). An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling, 50(1), 40–57. https://doi.org/10.1016/j.resconrec.2006.05.008

Edil, Tuncer; Acosta, Hector; Benson, Hector (2006). Stabilizing Soft Fine-Grained Soils with Fly Ash. Journal of Materials in Civil Engineering, 18(2), 283–294. https://doi.org/10.1061/(asce)0899-1561(2006)18:2(283)

Fernández-Jiménez, Ana; Cristelo, Nuno; Miranda, Tiago.; Palomo, Ángel (2017). Sustainable alkali activated materials: Precursor and activator derived from industrial wastes. Journal of Cleaner Production, 162, 1200–1209. https://doi.org/10.1016/j.jclepro.2017.06.151

Firoozi, Ali; Guney, Olgun; Firoozi, Ali; Baghini, Mojtaba (2017). Fundamentals of soil stabilization. International Journal of Geo-Engineering, 8(1), 26. https://doi.org/10.1186/s40703-017-0064-9

Garnica, P.; Perez, A.; Gómez, J.A.; Yhaaraby, E. (2002). Estabilización de suelos con cloruro de sodio para su uso en las vías terrestres. Instituto Mexicano Del Transporte, N°201, 68. Retrieved from http://www.imt.mx/archivos/Publicaciones/PublicacionTecnica/pt201.pdf

Gartner, Ellis (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021

Ghadir, Pooria; Ranjbar, Navid (2018). Clayey soil stabilization using geopolymer and Portland cement. Construction and Building Materials, 188, 361–371. https://doi.org/10.1016/j.conbuildmat.2018.07.207

Gutt, W.; Nixon, P. J. (1979). Use of waste materials in the construction industry Analysis of the RILEM Symposium by Correspondence. Matériaux et Construction, 12(70), 255–306. https://doi.org/doi:10.1007/bf02473543

Habert, G.; D’Espinose De Lacaillerie, J. B.; Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. Journal of Cleaner Production, 19(11), 1229–1238. https://doi.org/10.1016/j.jclepro.2011.03.012

Hall, M. R.; Najim, K. B.; Keikhaei, P. (2012). Soil stabilisation and earth construction: materials, properties and techniques. In Modern earth buildings (pp. 222–255). Woodhead Publishing Limited. https://doi.org/doi:10.1533/9780857096166.2.222

Hasan, Umair; Chegenizadeh, Amin; Budihardjo, Mochamad; Nikraz, Hamid (2016). Experimental Evaluation of Construction Waste and Ground Granulated Blast Furnace Slag as Alternative Soil Stabilisers. Geotechnical and Geological Engineering, 34(6), 1707–1722. https://doi.org/10.1007/s10706-016-9983-z

Higgins, D. (2005). Soil stabilisation with ground granulated blastfurnace slag. UK Cementitious Slag Makers Association (CSMA). Retrieved from http://www.ukcsma.co.uk/files/csma_report_on_soil_stabilisation.pdf

Horiuchi, Sumio; Kawaguchi, Masato; Yasuhara, Kazuya (2000). Effective use of fly ash slurry as fill material. Journal of Hazardous Materials, 76(2–3), 301–337. https://doi.org/10.1016/S0304-3894(00)00205-3

Horpibulsuk, Suksun; Rachan, Runglawan; Chinkulkijniwat, Avirut; Raksachon, Yuttana; Suddeepong, Apichat (2010). Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24(10), 2011–2021. https://doi.org/10.1016/j.conbuildmat.2010.03.011

Hughes, Paul; Glendinning, Stephanie (2004). Deep Dry Mix Ground Improvement of a Soft Peaty Clay Using Blast Furnace Slag and Red Gypsum. Quarterly Journal of Engineering Geology and Hydrogeology, 37(1996), 205–216.

Ismeik, Muhannad; Shaqour, Fathi (2020). Effectiveness of lime in stabilising subgrade soils subjected to freeze–thaw cycles. Road Materials and Pavement Design, 21(1), 42-60. https://doi.org/10.1080/14680629.2018.1479289

Jing, Ruxin; Zhang, Feng; Feng, Decheng; Liu, Xueyan; Scarpas, Athanasios (2019). Dynamic Shear Modulus and Damping Ratio of Compacted Silty Clay Subjected to Freeze–Thaw Cycles. Journal of Materials in Civil Engineering, 31(10), 04019244. https://doi.org/10.1061/(asce)mt.1943-5533.0002893

Joshi, Amruta; Patel, Satyajit; Shahu, Jagdish (2019). Utilization of Class ‘ C ’ Fly Ash in Flexible Pavement System — A Review. In: Sundaram R., Shahu J., Havanagi V. (eds). Geotechnics for Transportation Infrastructure, 29, 629–638. https://doi.org/https://doi.org/10.1007/978-981-13-6713-7_50

Khemissa, Mohamed; Mahamedi, Abdelkrim (2014). Cement and lime mixture stabilization of an expansive overconsolidated clay. Applied Clay Science, 95, 104–110. https://doi.org/10.1016/j.clay.2014.03.017

Kim, Bumjoo; Prezzi, Monica; Salgado, Rodrigo (2005). Geotechnical Properties of Fly and Bottom Ash Mixtures for Use in Highway Embankments. Journal of Geotechnical and Geoenvironmental Engineering, 131(7), 914–924. https://doi.org/10.1061/(asce)1090-0241(2005)131:7(914)

Kim, Yeonbae; Worrell, Ernst (2002). CO2 emission trends in the cement industry: An international comparison. Mitigation and Adaptation Strategies for Global Change, 7(2), 115–133. https://doi.org/10.1023/A:1022857829028

Kumar, Praveen; Chandra, Satish; Vishal, R. (2006). Comparative Study of Different Subbase Materials. Journal of Materials in Civil Engineering, 18(4), 576–580. https://doi.org/10.1061/(asce)0899-1561(2006)18:4(576)

Leitão, Dinis; Barbosa, José; Soares, Edgar; Miranda, Tiago; Cristelo, Nuno; Briga-Sá, Ana (2017). Thermal performance assessment of masonry made of ICEB’s stabilised with alkali-activated fly ash. Energy and Buildings, 139, 44–52. https://doi.org/10.1016/j.enbuild.2016.12.068

Liu, Jin; Shi, Bin; Jiang, Hongtao; Huang, He; Wang, Gonghui; Kamai, Toshitaka (2011). Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer. Engineering Geology, 117(1–2), 114–120. https://doi.org/10.1016/j.enggeo.2010.10.011

Luukkonen, Tero; Abdollahnejad, Zahra; Yliniemi, Juho; Kinnunen, Paivo; Illikainen, Mirja (2018). One-part alkali-activated materials : A Review. Cement and Concrete Research Journal, 103, 21–34. https://doi.org/10.1016/j.cemconres.2017.10.001

Ma, Cong; Chen, Bing; Chen, Longzhu (2016). Effect of organic matter on strength development of self-compacting earth-based construction stabilized with cement-based composites. Construction and Building Materials, 123, 414–423. https://doi.org/10.1016/j.conbuildmat.2016.07.018

Makusa, Gregory (2013). State of the Art Review Soil Stabilization Methods and Materials in Engineering Practice. In Luleå University of Technology, Luleå, Sweden, 35p.

Mallela, J.; Quintus, H. Von; Smith, K. L. (2004). Consideration of Lime-Stabilized Layers in Mechanistic-Empirical Pavement Design. The National Lime Association, Virginia, USA.

Manimaran, A.; Santhosh, S.; Ravichandran, P. T. (2018). Characteristics study on sub grade soil blended with ground granulated blast furnace slag. Rasayan Journal of Chemistry, 11(1), 401–404. https://doi.org/10.7324/RJC.2018.1112044

McDowell, Chester (1959). Stabilization of Soils with Lime, Lime-Flyash, and Other Lime Reactive Materials. Highway Research Board Bulletin, 231, 60–66. Retrieved from http://onlinepubs.trb.org/Onlinepubs/hrbbulletin/231/231-004.pdf

McLellan, Benjamin; Williams, Ross; Lay, Janine; Van Riessen, Arie; Corder, Glen (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010

Miao, Shiding; Wei, Cundi; Shen, Zhaopu; Wang, Xuelian; Luo, Feng; Huang, Xiaoming (2017). Stabilization of Highly Expansive Black Cotton Soils by Means of Geopolymerization. Journal of Materials in Civil Engineering, 29(10). https://doi.org/10.1061/(asce)mt.1943-5533.0002023

Millogo, Younoussa; Morel, Jean-Claude; Traoré, Karfa; Ouedraogo, Raguilnaba (2012). Microstructure, geotechnical and mechanical characteristics of quicklime-lateritic gravels mixtures used in road construction. Construction and Building Materials,26(1), 663-669. https://doi.org/10.1016/j.conbuildmat.2011.06.069

Miranda, Tiago; Leitão, Dinis; Oliveira, Joel; Corrêa-Silva, Manuela; Araújo, Nuno; Coelho, João; Fernández-Jimenez, Ana; Cristelo, Nuno (2020). Application of alkali-activated industrial wastes for the stabilisation of a full-scale (sub)base layer. Journal of Cleaner Production, 242, 118427. https://doi.org/10.1016/j.jclepro.2019.118427

Moghal, Arif (2017). State-of-the-Art Review on the Role of Fly Ashes in Geotechnical and Geoenvironmental Applications. Journal of Materials in Civil Engineering, 29(8), 04017072. https://doi.org/10.1061/(asce)mt.1943-5533.0001897

Muñoz, J. F.; Easton, T.; Dahmen, J. (2015). Using alkali-activated natural aluminosilicate minerals to produce compressed masonry construction materials. Construction and Building Materials, 95, 86–95. https://doi.org/10.1016/j.conbuildmat.2015.07.144

Nortcliff, Stephen; Hulpke, Herwig; Bannick, Claus; Terytze, Konstantin; Knoop, Gerhard; Bredemeier, Michael; Schulte-Bisping, Hubert (2012). Soil, 1. Definition, Function, and Utilization of Soil. Ullman´s Encyclopedia of Industrial Chemistry, 33, 399–419. https://doi.org/10.1002/14356007.b07

Omar-Sore, Seick; Messan, Adamah; Prud’homme, Elodie; Escadeillas, Gilles; Tsobnang, François (2018). Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso. Construction and Building Materials, 165, 333–345. https://doi.org/10.1016/j.conbuildmat.2018.01.051

Palanisamy, P.; Kumar, P. S. (2018). Effect Molarity in Geopolymer earth Brick Reinforced With Fibrous Coir Wastes Using Sandy Soil and Quarry Dust as Fine Aggregate. Case Studies in Construction Materials, 8, 347-358. https://doi.org/10.1016/j.cscm2018.01.009

Pandey, Anil; Rabbani, Ahsan (2017). Stabilisation of Pavement Subgrade Soil Using Lime and Cement : Review. International Research Journal of Engineering and Technology, 4(6), 5733–5735.

Passuello, Ana; Rodríguez, Erich; Hirt, Eduardo; Longhi, Marlon; Bernal, Susan; Provis, John; Kirchheim, Ana (2017). Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. Journal of Cleaner Production, 166, 680–689. https://doi.org/10.1016/j.jclepro.2017.08.007

Phummiphan, Itthikorn; Horpibulsuk, Suksun; Rachan, Runglawan; Arulrajah, Arul; Shen, Shui-Long; Chindaprasirt, Prinya (2017). High Calcium Fly Ash Geopolymer Stabilized Lateritic Soil and Granulated Blast Furnace Slag Blends as a Pavement Base Material. Journal of Hazardous Materials, 341, 257–267. https://doi.org/10.1016/j.jhazmat.2017.07.067

Portland Cement Association. (1992). Soil-Cement Laboratory Handbook.Engineering Bulletin, 44p.

Pourakbar, Shahram; Huat, Bujang; Asadi, Afshin; Fasihnikoutalab, Mohammad (2016). Model Study of alkali-Activated Waste Binder for soil stabilization. International Journal of Geosynthetics and Ground Engineering 2(4), 35. https://doi.org/10.1007/s40891-016-0075-1

Provis, John; Bernal, Susan (2014). Geopolymers and Related Alkali-Activated Materials. Annual Reviews of Materials Research, 44, 299-327. https://doi.org/doi.org/10.1146/annurev-matsci-070813-113515

Prusinski, Jan; Bhattacharja, Sankar (2007). Effectiveness of Portland Cement and Lime in Stabilizing Clay Soils. Transportation Research Record: Journal of the Transportation Research Board, 1652(1), 215–227. https://doi.org/10.3141/1652-28

Puppala, Anand (2016). Advances in ground modification with chemical additives: From theory to practice. Transportation Geotechnics, 9, 123-138. https://doi.org/10.1016/j.trgeo.2016.08.004

Puppala, Anand; Pedarla, Aravind (2017). Innovative ground improvement techniques for expansive soils. Innovative Infrastructure Solutions, 2, 24. https://doi.org/10.1007/s41062-017-0079-2

Quintanilla, C.A. (2007). El Estado del Arte del Suelo-Cemento en Estructuras de Pavimentos. FICEM, Federación Interamericana del Cemento (Federacion). Panamá. Retrieved from https://www.ibch.com/index.php?option=com_remository&Itemid=&func=startdown&id=14

Rios, Sara; Cristelo, Nuno; Viana da Fonseca, António; Ferreira, Cristiana (2015). Structural Performance of Alkali-Activated Soil Ash versus Soil Cement. Journal of Materials in Civil Engineering, 28(2). https://doi.org/10.1061/(asce)mt.1943-5533.0001398

Rios, Sara; Cristelo, Nuno; Viana da Fonseca, António; Ferreira, Cristiana (2016). Stiffness Behavior of Soil Stabilized with Alkali-Activated Fly Ash from Small to Large Strains. International Journal of Geomechanics, 17(3). https://doi.org/10.1061/(asce)gm.1943-5622.0000783

Rios, Sara; Ramos, Catarina; Viana da Fonseca, António; Cruz, Nuno; Rodrigues, Carlos (2016). Colombian Soil Stabilized with Geopolymers for Low Cost Roads. Procedia Engineering, 143, 1392–1400. https://doi.org/10.1016/j.proeng.2016.06.164

Rios, Sara; Ramos, Catarina; Viana da Fonseca, António; Cruz, Nuno; Rodrigues, Carlos (2019). Mechanical and durability properties of a soil stabilised with an alkali-activated cement. European Journal of Environmental and Civil Engineering, 23(2), 245–267. https://doi.org/10.1080/19648189.2016.1275987

Rivera, Jhonathan; Cuarán-Cuarán, Zuleny; Vanegas-Bonilla, Nathalie; Mejia de Gutiérrez, Ruby (2018). Novel use of waste glass powder: Production of geopolymeric tiles. Advanced Powder Technology, 29, 3448–3454. https://doi.org/.1037//0033-2909.I26.1.78

Robayo-Salazar, Rafael; Rivera, Jhonathan; Mejía de Gutiérrez, Ruby (2017). Alkali-activated building materials made with recycled construction and demolition wastes. Construction and Building Materials, 149, 130–138. https://doi.org/10.1016/j.conbuildmat.2017.05.122

Robayo, Rafael; Mulford, Alexandra; Munera, Jorge; Mejía de Gutiérrez, Ruby (2016). Alternative cements based on alkali-activated red clay brick waste. Construction and Building Materials, 128, 163–169. https://doi.org/10.1016/j.conbuildmat.2016.10.023

Sargent, Paul; Hughes, Paul; Rouainia, Mohamed; White, Maggie (2013). The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils. Engineering Geology, 152, 96–108. https://doi.org/10.1016/j.enggeo.2012.10.013

Sekhar, Darshan; Nayak, Sitaram; Preetham, H. K. (2017). Influence of Granulated Blast Furnace Slag and Cement on the Strength Properties of Lithomargic Clay. Indian Geotechnical Journal, 47(3), 384–392. https://doi.org/10.1007/s40098-017-0228-8

Senol, Aykut; Edil, Tuncer; Bin-Shafique, Sazzad; Acosta, Hector; Benson, Craig (2006). Soft subgrades’ stabilization by using various fly ashes. Resources, Conservation and Recycling, 46(4), 365–376. https://doi.org/10.1016/j.resconrec.2005.08.005

Shi, Caijun; Jiménez, A. F.; Palomo, Angel (2011). New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 41, 750–763. https://doi.org/10.1016/j.cemconres.2011.03.016

Silva, Rui; Soares, Edgar; Oliveira, Daniel; Miranda, Tiago; Cristelo, Nuno; Leitão, Dinis (2015). Mechanical characterisation of dry-stack masonry made of CEBs stabilised with alkaline activation. Construction and Building Materials, 75, 349–358. https://doi.org/10.1016/j.conbuildmat.2014.11.038

Singh, G. V. P. B.; Subramaniam, K. V. L. (2019). Influence of processing temperature on the reaction product and strength gain in alkali-activated fly ash. Cement and Concrete Composites, 95, 10-18. https://doi.org/10.1016/j.cemconcomp.2018.10.010

Singhi, Binod; Laskar, Aminul; Ahmed, Mokaddes (2017). Mechanical Behavior and Sulfate Resistance of Alkali Activated Stabilized Clayey Soil. Geotechnical and Geological Engineering, 35(5), 1907–1920. https://doi.org/10.1007/s10706-017-0216-x

Sivapullaiah, P. V.; Moghal, A. A. B. (2010). Role of Gypsum in the Strength Development of Fly Ashes with Lime. Journal of Materials in Civil Engineering, 23(2), 197–206. https://doi.org/10.1061/(asce)mt.1943-5533.0000158

Syed Zuber, S. Z.; Kamarudin, H.; Mustafa, A.; Abdullah, M.M.A.B; Bingussain, M; Salwas, M. (2013). Review on soil stabilization techniques. Australian Journal of Basic and Applied Sciences 7, 258-265.

Taylor, Michael; Tam, Cecilia; Gielen, Dolf (2006). Energy Efficiency and CO2 Emissions from the Global Cement Industry. International Energy Agency, Paris. https://doi.org/10.1016/j.ijms.2011.08.030

Torres-Carrasco, Manuel; Puertas, F. (2014). Sodium silicate solutions from dissolution of glasswastes. Statistical analysis. Materiales de Construcción, 64(314), e014. https://doi.org/10.3989/mc.2014.05213

Torres-Carrasco, Manuel; Puertas, F. (2015). Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. Journal of Cleaner Production, 90, 397–408.

Tremblay, Hélène; Duchesne, Josée; Locat, Jacques; Leroueil, Serge (2002). Influence of the nature of organic compounds on fine soil stabilization with cement. Canadian Geotechnical Journal, 39(3), 535–546. https://doi.org/10.1139/t02-002

Trussell, S.; Spence, R. D. (1994). A Review of Solidification / Stabilization Interferences. Waste Management, 14(6), 507–519. https://doi.org/doi: 10.1016/0956-053X(94)90134-1

U.S.Department of Transportation. (1992). Soil and Base Stabilization and Associated Drainage Considerations. Volume II, Mixture Desing Considerations. 400 Seventh Street, SW. Washington, D.C. 20590.

Wu, Yanguang; Lu, Bowen; Bai, Tao; Wang, Hao; Du, Feipeng; Zhang, Yunfei; Cai, Lu; Jiang, Can; Wang, Wenjun (2019). Geopolymer, green alkali-activated cementitious material synthesis, applications and challenges. Construction and Building Materials, 224, 930–949. https://doi.org/doi.org/10.1016/j.conbuildmat.2019.07.112

Yi, Yaolin; Zheng, Xu; Liu, Songyu; Al-Tabbaa, Abir (2015). Comparison of reactive magnesia- and carbide slag-activated ground granulated blastfurnace slag and Portland cement for stabilisation of a natural soil. Applied Clay Science, 111, 21–26. https://doi.org/10.1016/j.clay.2015.03.023

Yunus, Mohd; Zurairahetty, Nor (2007). Stabilization of Organic Clay Using Lime-Added Salt. Universiti Teknologi Malaysia, Faculty of Civil Engineering. Retrieved from http://eprints.utm.my/id/eprint/11383/

Zhang, Mo; Guo, Hong; El-Korchi, Tahar; Zhang, Guoping; Tao, Mingjiang (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 1468–1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017

Zhao, Honghua; Ge, Louis; Petry, Thomas; Sun, Yi-Zhen (2014). Effects of chemical stabilizers on an expansive clay. KSCE Journal of Civil Engineering, 18(4), 1009–1017. https://doi.org/10.1007/s12205-013-1014-5

Publicado
2020-06-05
Cómo citar
Rivera, J. F., Aguirre-Guerrero, A., Mejía de Gutiérrez, R., & Orobio, A. (2020). Estabilización química de suelos - Materiales convencionales y activados alcalinamente (revisión). Informador Técnico, 84(2). https://doi.org/10.23850/22565035.2530
Sección
Artículo de Revisión

Artículos más leídos del mismo autor/a