Informador Técnico
ISSN: 2256-5035 (Electrónico)
ISSN: 0122-056X (Impreso)
Formato: Electrónico / Acceso Abierto
Frecuencia: Números Semestrales
Revisión por Pares: Doble Ciego
Na tecnologia de álcali-ativação de cinzas volantes, dependendo da combinação dos ativadores, reações deletérias poderão resultar em queda na resistência com a idade. Assim, este trabalho teve como objetivo avaliar a resistência à compressão de cinzas volantes álcali-ativadas, a partir de soluções combinadas de NaOH e Ca(OH)2. Três relações molares CaO/SiO2 (C/S) foram estudadas: 0.05 (M5), 0.15 (M15) e 0.25 (M25). Resistências da ordem de 21 MPa (M15) e 19 MPa (M25) foram atingidas na idade de 7 dias. Porém, aos 28 e 91 dias as resistências foram de 8 MPa e 7 MPa, respetivamente. As amostras M5 apresentaram comportamento ascendente da resistência com a idade. Assim, a queda na resistência está condicionada a relação C/S das matrizes. Nos espectros 29Si RMN da amostra M25 o Si apresenta diminuição das espécies Q4(3Al) e Q4(2Al), estes responsáveis pelas características mecânicas das amostras ativadas.
Andersen, M. D.; Jakobsen, H.J.; Skibsted, J.(2014).Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: a high-field 27Al and 29Si MAS NMR investigation". Inorg. Chem. nº 42, pp2280-2287.
ASTM C618. (1998). Standard Specification for Coal Fly abd Raw or Calcined Original Pozzolan for Use as a Mineral Admixture in Concrete".In: Annual Book of ASTM, n° 04.02.
Criado, M., Fernandez-Jimenez, A.; Garcia-Loderiro, I Carcelan Taboda, V. (2012).Effect of relative humidity on the reaction products of alkali activated fly ash. Journal of the European Ceramic Society, n° 32, pp.2799–2807.
https://doi.org/10.1016/j.jeurceramsoc.2011.11.036
Fernández-Jiménez, A. Palomo, A, I. Sobrados I, &.Sanz, J. (2006) The role played by the reactive alumina content in the alkaline activation of fly ashes". Microporous and Mesoporous Materials, n° 91, pp. 111-119.
https://doi.org/10.1016/j.micromeso.2005.11.015
García-Lodeiro, I., Fernández-Jiménez, A., & Palomo, A. (2011) .Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O,Cement and Concrete Research, nº 41; pp.923-931.
https://doi.org/10.1016/j.cemconres.2011.05.006
García-Lodeiro, Fernández-Jiménez, A., & Palomo, A. (2013). Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends, Cement and Concrete Research, n° 52; pp. 112-122.
Granizo, M.L. Alonso, S., Blanco-Varela & Palomo, A. (2002). Alkaline activation of metakaolin:effect of calcium hydroxide in the products of reaction". J. Am. Ceram. Soc., 2002, nº 85 (1), pp 225–231. Mingyu, H. Xiaomin, Z & Fumei,L (2009). Alkaliactivated fly ash-based geopolymer with zeolite or bewntonite as additives". Cement & Concrete Composites, n° 31, pp. 762-768.
Jeon, D.; Jun, Y.; Jeong, Y; Eun Oh, J. (2015).Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system. Cement and Concrete Research, 2015, n° 67,pp. 215-225.
https://doi.org/10.1016/j.cemconres.2014.10.001
Palomo, A.C., Grutzeck, M.W., Blanco, T (1999).Alkali-activated Fly Ashes. A Cement for Future". Cement and Concrete Research, nº29, pp. 1323-1329.
https://doi.org/10.1016/S0008-8846(98)00243-9
Palomo, A. Fernández-Jiménez, A., Kovalchu, G. Ordo-ez, M & Naranjo, C (2006). OPC–fly ash cementitious systems. Study of gel binders formed during alkaline hydration".J. Mater. Sci, n° 42, pp 2958–2966.
Peng, Z., Vance, K., Dakhane, A., & Neithalath, N (2015). Microstructural and 29Si MAS NMR spectroscopic evaluations of alkali cationic effects on fly ash activation, Cement and Concrete Composites, n° 57, pp. 34-43.
https://doi.org/10.1016/j.cemconcomp.2014.12.005
Puertas,F.& Jiménez, A.F. (2003). Mineralogical and microstructural characterisation of alkaliactivated ash/slag pastes. Cement and Concrete composites, nº 25, pp 287-292.
https://doi.org/10.1016/S0958-9465(02)00059-8
Richardson,I. G., R., Groves G.W. & Dobson C.M. (1993) . et al, "Location of aluminum in substituted calcium silicate hydrate (C-S-H) gels as determined by 29Si and 27Al NMR and EELS". J. Am. Ceram. Soc., 2005,n°, pp 2285–2288.
Shi, C. (1995). Acelaration of the reactivity of fly ash by chemical activation". Cement and Concrete Research, n° 25, pp 15-21.
https://doi.org/10.1016/0008-8846(94)00107-A
Van Jaarsveld, J. G. S. & van Deventer (1997). The potential use of Geopolymeric materials to immobilise toxic metals: part I. Theory and applications". Minerals Engineering, nº 10,pp. 659-669.
https://doi.org/10.1016/S0892-6875(97)00046-0
Vargas, A.S.; Dal Molin, D.C.C.; Vilela, A.C.F.; Jalali,S. & Gomes, J.C. (2007). Cinzas volantes álcali-ativadas com solução combinada de NaOH e Ca(OH)2". Matéria, n° 12, pp. 462-469.
https://doi.org/10.1590/s1517-70762007000300006
Vargas, A.S Denise C.C. Dal Molin, Â B., . Vilela,.ACF. Castro-Gomes,j. & M. de Gutierrez,R (2014). Strength development of alkaliactivated fly ash produced with combined NaOH and Ca(OH)2 activators". Cement & Concrete Composites, n° 53, pp. 341-349.
https://doi.org/10.1016/j.cemconcomp.2014.06.012
Vargas, AS., Dal Molin, Â B.& Vilela,ACF (2011).Cement & Concrete Composites, n° 33, pp.653-660.
https://doi.org/10.1016/j.cemconcomp.2011.03.006
Yip, C. K., (2003). Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. Journal of Materials Science, 2003, n°38, pp. 3851-3860.
https://doi.org/10.1023/A:1025904905176
Yip, C. K. & Van Deventer, J. S. J. (2003). Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder". Journal of Materials Science, n° 38, pp 3851-3860.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2019 Servicio Nacional de Aprendizaje (SENA)