Informador Técnico
ISSN: 2256-5035 (Electrónico)
ISSN: 0122-056X (Impreso)
Formato: Electrónico / Acceso Abierto
Frecuencia: Números Semestrales
Revisión por Pares: Doble Ciego
Aguirre, A.M., Mejía, R. (2013) Durabilidad del hormigón armado expuesto a condiciones agresivas, Materiales de Construcción, 63(309), 7-38. Recuperado de http://dx.doi.org/10.3989/mc.2013.00313
https://doi.org/10.3989/mc.2013.00313
Andrade, C., González, J.A. (1978) Quantitative measurements of corrosion measurements, Werkstoffe und Korrosion, 29, 515-519.
https://doi.org/10.1002/maco.19780290804
Andrade, C., Alonso, C. (1996) Corrosion rate monitoring in the laboratory and onsite, Construction and Building, 10(5), 315-328. Recuperado de http://dx.doi.org/10.1016/0950-0618(95)00044-5
https://doi.org/10.1016/0950-0618(95)00044-5
Andrade, C., Buják, R. (2013) Effects of some mineral additions to Portland cement on reinforcement corrosion, Cement and Concrete Research, 53, 59-67. Recuperado de http://dx.doi.org/10.1016/j.cemconres.2013.06.004
https://doi.org/10.1016/j.cemconres.2013.06.004
Angst, U., Elsener, B., Larsen, C. K., Vennesland, Ø. (2009) Critical chloride content in reinforced concrete - A review, Cement and Concrete Research, 39(12), 1122-1138. Recuperado de http://dx.doi.org/10.1016/j.cemconres.2009.08.006
https://doi.org/10.1016/j.cemconres.2009.08.006
ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. Recuperado de: http://www.astm.org/Standards/C642.htm.
ASTM C1585-13 Standard Test Method for Measurement of Rate of Absorption of water by Hydraulic- Cement Concretes. Recuperado de: http://www.astm.org/Standards/C1585.htm.
ASTM C1202-12 Standard Test Method for Electrical Indication of Cocnrete´s Ability to Resist Chloride Ion Penetration. Recuperado de: http://www.astm.org/Standards/C1202.htm.
Badogiannis, E., Sfikas, I., Voukia, D., Trezos, K., Tsivilis, S. (2015a). Durability of metakaolin Self-Compacting Concrete, Construction and Building Materials, 85, 133-141. doi:10.1016/j.conbuildmat.2015.02.023
https://doi.org/10.1016/j.conbuildmat.2015.02.023
Badogiannis, E., Aggeli, E., Papadakis, V.G., Tsivilis S. (2015b) Evaluation of chloride-penetration resistance of metakaolin concrete by means of a diffusion - Binding model and of the k-value concept, Cement and Concrete Composites, 63,1- 7. doi:10.1016/j.cemconcomp.2015.07.012
https://doi.org/10.1016/j.cemconcomp.2015.07.012
Basunful, I.A., Dehwah, H.A., Maslehuddin, M. (1994). Durability evaluation of repair materials in hot air environments, SP-145 Proceedings Third Cammet ACI International Conference on Durability of Concrete, 835-850, Nice, France.
Bogă, A. R., Topçu, I. B. (2012) Influence of fly ash on corrosion resistance and chloride ion permeability of concrete, Construction and Building Materials, 31, 258-264.Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2011.12.106
https://doi.org/10.1016/j.conbuildmat.2011.12.106
Courard, L., Darimont, A., Schouterden, M., Ferauche, F., Willem, X., Degeimbre, R. (2003). Durability of mortars modified with metakaolin, Cement and Concrete Research, 33(9), 1473-1479. Recuperado de: http://dx.doi.org/10.1016/S0008-8846(03)00090-5
https://doi.org/10.1016/S0008-8846(03)00090-5
Diab, A. M., Elyamany, H. E., Elmoty, A. (2011). Effect of mix proportions, seawater curing medium and applied voltages on corrosion resistance of concrete incorporating mineral admixtures, Alexandria Engineering Journal, 50, 65-78. Recuperado de: http://dx.doi.org/10.1016/j.aej.2011.01.013
https://doi.org/10.1016/j.aej.2011.01.013
EN206-1 (2008). Hormigón - Parte 1: Especificación, comportamiento, fabricación y conformidad.
Farahani, A., Taghaddos, H., Shekarchi, M. (2015). Prediction of long-term chloride diffusion in silica fume concrete in a marine environment, Cement and Concrete Composites, 59, 10-17. doi:10.1016/j.cemconcomp.2015.03.006
https://doi.org/10.1016/j.cemconcomp.2015.03.006
Ferraro, R. M., Nanni, A. (2012). Effect of off-white rice husk ash on strength, porosity, conductivity and corrosion resistance of white concrete, Construction and Building Materials, 31, 220-225. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2011.12.010
https://doi.org/10.1016/j.conbuildmat.2011.12.010
Güneyisi, E., Geso'lu, M., Gesogˇlu, F., Mermerdaş, K. (2013) Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin, Composites Part B: Engineering, 45(1), 1288- 1295. Recuperado de: http://dx.doi.org/10.1016/j.compositesb.2012.09.085.
https://doi.org/10.1016/j.compositesb.2012.09.085
Güneyisi, E., Özturan, T., Geso'lu, M. (2007) Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements, Building and Environment, 42(7), 2676-2685. Recuperado de: http://dx.doi.org/10.1016/j.buildenv.2006.07.008
https://doi.org/10.1016/j.buildenv.2006.07.008
Ha, T-H., Muralidharan, S., Bae, J-H., Ha, Y-Ch., Lee, H-G., Park, K-W., Kim, D-K. (2007). Accelerated short-term techniques to evaluate the corrosion performance of steel in fly ash blended concrete, Building and Environment, 42, 78-85. Recuperado de: http://dx.doi.org/10.1016/j.buildenv.2005.08.019
https://doi.org/10.1016/j.buildenv.2005.08.019
Hassan, A.A.A., Lachemi, M., Hossain, K. (2012) Effect of metakaolin and silica fume on the durability of self-consolidating concrete, Cement and Concrete Composites, 34(6), 801- 807. Recuperado de http://dx.doi.org/10.1016/j.cemconcomp.2012.02.013
https://doi.org/10.1016/j.cemconcomp.2012.02.013
Horsakulthai, V., Phiuvanna, S., Kaenbud, W. (2011). Investigation on the corrosion resistance of bagasse-rice husk-wood ash blended cement concrete by impressed voltage, Construction and Building Materials, 25(1), 54-60. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2010.06.057
https://doi.org/10.1016/j.conbuildmat.2010.06.057
Kannan V., Ganesan K. (2014). Chloride and chemical resistance of self-compacting concrete containing rice husk ash and metakaolin, Construction and Building Materials, 51(31), 225-234. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2013.10.050
https://doi.org/10.1016/j.conbuildmat.2013.10.050
Keleştemur, O., Demirel, B. (2015). Effect of metakaolin on the corrosion resistance of structural lightweight concrete, Construction and Building Materials, 81, 172-178. doi:10.1016/j. conbuildmat.2015.02.049
Khan, M. I., Siddique, R. (2011). Utilization of silica fume in concrete: Review of durability properties, Resources, Conservation and Recycling, 57, 30-35. Recuperado de: http://dx.doi.org/10.1016/j.resconrec.2011.09.016
https://doi.org/10.1016/j.resconrec.2011.09.016
Kim, H-S., Lee, S-H., Moon, H-Y. (2007). Strength properties and durability aspects of high strength concrete using Korean metakaolin, Construction and Building Materials, 21(6), 1229-1237. Recuperado de http://dx.doi.org/10.1016/j.conbuildmat.2006.05.007
https://doi.org/10.1016/j.conbuildmat.2006.05.007
M. de Gutiérrez, R., Delvasto, S., Talero, R. (2000) Una nueva puzolana para materiales cementicios de elevadas prestaciones, Materiales de Construcción, 50(260), 5-13. Recuperado de: http://dx.doi.org/10.3989/mc.2000.v50.i260.386
https://doi.org/10.3989/mc.2000.v50.i260.386
Mejía de Gutiérrez, R., Torres J., Guerrero, C.E. (2004) Análisis del proceso térmico de producción de una puzolana, Materiales de Construcción, 54(274), 65-72. Recuperado de http://dx.doi.org/10.3989/mc.2004.v54.i274.233
https://doi.org/10.3989/mc.2004.v54.i274.233
NT BUILD 356 (1989) Nordtest method. Concrete, repairing materials and protective coating: Embedded steel method, chloride permeability.
NTC 5551 (2007), Durabilidad de Estructuras de Concreto, Colombia
Parande, A. K., Babu, R. B., Karthik, M. A., Kumaar, K. K., Palaniswamy, N. (2008). Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/ mortar, Construction and Building Materials, 22(3), 127-134. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2006.10.003
https://doi.org/10.1016/j.conbuildmat.2006.10.003
Poon, C.S., Kou, S.C., Lam, L. (2006) Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete, Construction and Building Materials, 20(10), 858-865. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2005.07.001
https://doi.org/10.1016/j.conbuildmat.2005.07.001
Ramezanianpour, A.A., Jovein, H.B. (2012) Influence of metakaolin as supplementary cementing material on strength and durability of concretes, Construction and Building Materials, 30, 470-479. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2011.12.050
https://doi.org/10.1016/j.conbuildmat.2011.12.050
Rao, G.A. (2001) Influence of silica fume on longterm strength of mortars containing different aggregate fractions, Cement and Concrete Research, 31(1), 7-12. Recuperado de http://dx.doi.org/10.1016/S0008-8846(00)00346-X
https://doi.org/10.1016/S0008-8846(00)00346-X
Sabir, B. B., Wild, S., Bai, J. (2001). Metakaolin and calcined clays as pozzolans for concrete: a review, Cement and Concrete Composites, 23(6), 441-454. Recuperado de http://dx.doi.org/10.1016/S0958-9465(00)00092-5
https://doi.org/10.1016/S0958-9465(00)00092-5
Saojeng C., Weiting L. (2013) Effects of silica fume and steel fiber on chloride ion penetration and corrosion behavior of cement-based composites, Journal of Wuhan University of Technology-Mater. Sci. Ed., 28(2), 279-284, Recuperado de http://dx.doi.org/10.1007/s11595-013-0679-4
https://doi.org/10.1007/s11595-013-0679-4
Saraswathy, V., Song, H-W. (2008) Evaluation of Cementitious Repair Mortars for Corrosion Resistance., Portugaliae Electrochimica Acta, 26(5), 417-432. http://www.scielo.oces.mctes.pt/pdf/pea/v26n5/v26n5a04.pdf
Shekarchi, M., Rafiee, A., Layssi, H. (2009). Longterm chloride diffusion in silica fume concrete in harsh marine climates, Cement and Concrete Composites, 31(10), 769-775. Recuperado de http://dx.doi.org/10.1016/j.cemconcomp.2009.08.005
https://doi.org/10.1016/j.cemconcomp.2009.08.005
Shi, X., Xie, N., Fortune, K., Gong, J. (2012). Durability of steel reinforced concrete in chloride environments: An overview, Construction and Building Materials, 30, 125-138. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2011.12.038
https://doi.org/10.1016/j.conbuildmat.2011.12.038
Siddique, R., Klaus, J. (2009) Influence of metakaolin on the properties of mortar and concrete: A review, Applied Clay Science, 43(3-4), 392-400. Recuperado de: http://dx.doi.org/10.1016/j.clay.2008.11.007
https://doi.org/10.1016/j.clay.2008.11.007
Siddique, R. (2011), Utilization of silica fume in concrete: Review of hardened properties, Resources, Conservation and Recycling, 55(11), 923-932. Recuperado de: http://dx.doi.org/10.1016/j.resconrec.2011.06.012
https://doi.org/10.1016/j.resconrec.2011.06.012
Song, H-W., Lee, C-H., Ann, K-Y. (2008) Factors influencing chloride transport in concrete structures exposed to marine environments, Cement and Concrete Composites, 30(2), 113-121. Recuperado de: http://dx.doi.org/10.1016/j.cemconcomp.2007.09.005
https://doi.org/10.1016/j.cemconcomp.2007.09.005
Song, H-W., Pack, S-W., Nam, S-H., Jang, J-C., Saraswathy, V. (2010) Estimation of the permeability of silica fume cement concrete, Construction and Building Materials, 24(3), 315-321. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2009.08.033
https://doi.org/10.1016/j.conbuildmat.2009.08.033
Topçu, I. B., Bogă, A. R. (2010) Effect of ground granulate blast-furnace slag on corrosion performance of steel embedded in concrete, Materials and Design, 31, 3358-3365. Recuperado de: http://dx.doi.org/10.1016/j.matdes.2010.01.057
https://doi.org/10.1016/j.matdes.2010.01.057
Torres-Agredo, J., Mejía, R., Delvasto, S. (2011) Efecto del porcentaje de adición de metacaolín en las propiedades finales del concreto adicionado, Ingeniería y Universidad, 15(1), 77- 90. Recuperado de: http://revistas.javeriana.edu.co/index.php/iyu/article/view/1130
Vejmelková, E., Pavlíková, M., Keppert, M., Keršner, Z., Rovnaníková, P., Ondráček, M., Sedlmajer, M., Černý, R. (2010) High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics, Construction and Building Materials, 24(8), 1404-1411. Recuperado de: http://dx.doi.org/10.1016/j.conbuildmat.2010.01.017
https://doi.org/10.1016/j.conbuildmat.2010.01.017
Zhang, W-M., Ba, H-J. (2013) Effect of silica fume addition and repeated loading on chloride diffusion coefficient of concrete, Materials and Structures, 46(7), 1183-1191. Recuperado de: http://dx.doi.org/10.1617/s11527-012-9963-6