Abstract
In this work, kinetics of the fermentation process is analysed considering the reduction of sugars in the must, ethanol production, the generation of butanedione and ethyl acetate, through dynamic equations associated with the effect of temperature and its incidence on the Multi-objective optimization of the process. A contribution to the kinetic modelling system is presented with the inclusion of Arrhenius-type expressions on dynamic quantifications, which consolidate number of system parameters reduction. It is possible to describe the magnitude and extension of the process visualizing key concentrations for ethyl alcohol, ethyl acetate and diacetyl, as a function of initial substrate variables, considering the growth and inhibition rates. It was confirmed that the fermentable sugar contents govern the alcohol concentration at different temperatures and process times.
References
Aniseh, M.; Seyyed Haddi, R.; Seyyed Mohammad, M.; Rezael, K.R. 2011. A comparison between sugar consumption and ethanol production in wort by immobilized Saccharomyces cerevisiae Saccharomyces ludwigii and Saccharomyces rouxii on Brewer's spent grain. Braz J Microbiol, 42, 605-615. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769836/pdf/bjm-42-605.pdf
Bokulich, N.A.; Bamfoth, C.W. 2013. The Microbiology of Malting and Brewing. Microbiol Mol Biol Rev, 77(2), 157-172. https://doi:10.1128/MMBR.00060-12
Boulton, C. 2013. Encyclopaedia of brewing. John Wiley y Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK. 714 p. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118598115.
Bricio-Barrios, E.E.; Bricio-Barrios, J.A.; Arceo-Díaz, S.; Hernández-Escoto, H.; López-Caamal, F. 2017. Modelado de la fermentación de cerveza de alta graduación mediante modelos cinéticos. Memorias del Congreso Internacional de Investigación. Academia Revistas Celaya, 9(6), 747-752. https://www.researchgate.net/publication/321950774_modelado_de_la_fermentacion_de_cerveza_de_alta_graduacion_mediante_modelos_cineticos
Bricio-Barrios, E.E.; Bricio-Barrios, J.A.; Arceo-Díaz, S.; Hernández-Escoto, H.; López-Caamal, F. 2018. Análisis de las propiedades nutrimentales de la cerveza base de amaranto – malta por medio de modelado matemático. Revista Alimentos Hoy, 26(43), 1-14. https://alimentoshoy.acta.org.co/index.php/hoy/article/view/476/382
Callejo, J.M.; Tesfaye, W.; González, M. C.; Morata, A. 2019. Craft Beers: Current Situation and Future Trends. New Advances on Fermentation Processes. Licensee IntechOpen. Pp 1-18. https://cdn.intechopen.com/pdfs/70255.pdf
Carneiro, D.D.; Da Cruz Meleiro, L.A. 2011. Proposta de uma nova estratégia de controle para a fermentação cervejeira. UEPG Ci. Exatas Terra, Ci. Agr. Eng, 17(1), 17-28. https://revistas2.uepg.br/index.php/exatas/article/view/969
Carrillo-Ureta, G.; Roberts, P.; Becerra, V. 2001. Genetic algorithms for optimal control of beer fermentation. In: Proceedings of the 2001 IEEE International Symposium on Intelligent Control. https://10.1109 / ISIC.2001.971541
Carrillo-Ureta, G.E. 2003. Optimal control of a fermentation process. European Control Conference (ECC), 1947-1952. https://10.23919 / ECC.2003.7085251
Corrieu, G.; Trelea, I.C.; Perret, B. 2000. On-line estimation and prediction of density and ethanol evolution in the brewery. Mater Brewers Asociation of the Americas,37(2), 173–181. https://hal-agroparistech.archives-ouvertes.fr/hal-01537190/document
Cortacero-Ramírez, S.; De Castro, M.H.B.; Segura-Carretero, A.; Cruces-Blanco, C.; Fernández-Gutierrez, A. 2003. Analysis of beer components by capillary electrophoretic methods. TrAC-Trend Anal Chem, 22(7), 440-455. https://doi.org/10.1016/S0165-9936(03)00704-0
de Andrés-Toro, B.; Girón-Sie, J.M.; López-Orozco, J. A.; Fernández-Conde, C.; Peinado, J.M.; García-Ochoa, F. 1998. A kinetic model for beer production under industrial operational conditions. Math Comput Simulat, 48(1), 65-74. https://doi.org/10.1016/S0378-4754(98)00147-5
de Andrés-Toro, B.; Girón-Sierra, J.; Fernández-Blanco, P.; López-Orozco, J.; Besada-Portas, E. 2004. Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms. J Zhejiang Univ Sci, 5, 378-389. https://link.springer.com/article/10.1007/BF02851182
Fox, G. P., Staunton, M., Agnew, E., D’Arcy, B. 2019. Effect of varying starch properties and mashing conditions on wort sugar profiles. Journal of the Institute of Brewing. https://doi.org/10.1002/jib.585.
García, A.; García, L.; Díaz, M. 1994. Modelling of diacetyl production during beer fermentation. Journal of the Institute of Brewing, 100(3), 179-183. https://doi.org/10.1002/j.2050-0416.1994.tb00819.x
Garduño-García, A.; Martínez-Romero, S.L.C.L.; Ruiz-García, A. 2014. Simulación del proceso de fermentación de cerveza artesanal. Ingeniería Investigación y Tecnología, 15(2), 221-231. https://doi.org/10.1016/S1405-7743(14)72212-7
Krogerus, K.; Gibson, B. 2013. Influence of valine and other amino acids on total diacetyl and 2,3-pentanedione levels during fermentation of brewer’s wort. Appl Microbiol Biotechnol, 97(15), 6919-6930. https://pubmed.ncbi.nlm.nih.gov/23677441/
Krogerus, K.; Gibson, B.; Hytönen, E. 2015. An Improved Model for Prediction of Wort Fermentation Progress and Total Diacetyl Profile. J Am Soc Brew Chem, 73(1), 90–99. https://doi.org/10.1094/ASBCJ-2015-0106-01
Langenaeken, N. A., De Schepper, C. F., De Schutter, D. P., Courtin, C. M. 2020. Carbohydrate content and structure during malting and brewing: a mass balance study. Journal of the Institute of Brewing, 126(3), 253-262. https://doi.org/10.1002/jib.619
Li, H.; Liu, F.; He, X.; Cui, Y.; Hao, J. 2015. A study on kinetics of beer ageing and development of methods for predicting the time to detection of flavor changes in beer. J Inst Brew, 121(1), 38–43. https://doi.org/10.1002/jib.194
Moutsoglou, M. E., Dearden, A. C. 2020. Effect of the respiro-fermentative balance during yeast propagation on fermentation and wort attenuation. Journal of the Institute of Brewing, 126(3),289-297. https://doi.org/10.1002/jib.621
Olaniran, A., Maharaj, Y., Pillay, B. 2011. Effects of fermentation temperature on the composition of beer volatile compounds, organoleptic quality and spent yeast density. Electron J Biotechn, 14, 2, 1-11. http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/657
Oonsivilai, R., Oonzivilai, A. 2010. Temperature profile in fermenting process using differential Evolution. EE'10: Proceedings of the 5th IASME/WSEAS international conference on Energy & environment, 315-319. https://dl.acm.org/doi/10.5555/1807906.1807966
Pires, E.; Brányik, T. 2015. Biochemistry of beer fermentation. Springer Cham Heidelberg New York Dordrecht, London.80 p. https://www.springer.com/gp/book/9783319151885
Rodman, A.D.; Gerogiorgis, D.I. 2016. Dynamic Simulation and Visualisation of Fermentation: Effect of Process Conditions on Beer Quality. IFAC-Papers OnLine, 49(7), 615–620. https://doi.org/10.1016/j.ifacol.2016.07.236
Salamanca, G., Osorio, T.M., Arango, C. 2015. Cervezas artesanales colombianas: Propiedades Fisicoquímicas y estándares de cromaticidad. VII Simposio Internacional de Innovación y Desarrollo de Alimentos, INNOVA, X Congreso Iberoamericano de Ingeniería de alimentos, CIBIA, LATU en Montevideo, Uruguay. https://catalogo.latu.org.uy/opac_css/index.php?lvl=notice_display&id=31144
Stewart, G.G. 2017. The Production of Secondary Metabolites with Flavour Potential during Brewing and Distilling Wort Fermentations. Fermentation, 3(4), 1-27. https://doi.org/10.3390/fermentation3040063
Terán, S. 2017. Evaluación de la utilización de amaranto (Amaranthus spp.) como adjunto y dos cepas de levadura (Saccharomyces cerevisiae) en la fabricación de cerveza. Tesis de pregrado. Escuela Politécnica Nacional. Quito, Ecuador. https://bibdigital.epn.edu.ec/handle/15000/17617
Trelea, I.C.; Titica, M.; Landaus, S.; Latrille, E.; Corrieu, G.; Cheruy, A. 2001. Predictive modelling of brewing fermentation: From knowledge-based to black-box models. Mathematics and Computers in Simulation, 56(4-5), 405-424. https://doi.org/10.1016/S0378-4754(01)00311-1
Vidgren, V.; Londesborough, J. 2011. 125th Anniversary review: Yeast flocculation and sedimentation in brewing. J Inst Brew, 117(4), 475–487. https://doi.org/10.1002/j.2050-0416.2011.tb00495.x
Xiao, J.; Zhou, Z.K.; Zhang, G.X. 2004. Ant colony system algorithm for the optimization of beer fermentation control. Journal of Zhejiang University, 5, 1597-1603. http://dx.doi.org/10.1631/jzus.2004.1597

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2020 Revista Colombiana de Investigaciones Agroindustriales